3 resultados para Convergence Analysis

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis using the transverse resonance technique (TRT) and a proposed MTRT applied in the analysis of the dispersive characteristics of microstrip lines built on truncated isotropic and anisotropic dielectric substrates. The TRT uses the transmission lines model in the transversal section of the structure, allowing to analyze its dispersive behavior. The difference between TRT and MTRT consists basically of the resonance direction. While in the TRT the resonance is calculated in the same direction of the metallic strip normal axis, the MTRT considers the resonance in the metallic strip parallel plane. Although the application of the MTRT results in a more complex equivalent circuit, its use allows some added characterization, like longitudinal section electric mode (LSE) and longitudinal section magnetic mode (LSM), microstrips with truncated substrate, or structures with different dielectric regions. A computer program using TRT and MTRT proposed in this work is implemented for the characterization of microstrips on truncated isotropic and anisotropic substrates. In this analysis, propagating and evanescent modes are considered. Thus, it is possible to characterize both the dominant and higher order modes of the structure. Numerical results are presented for the effective permittivity, characteristic impedance and relative phase velocity for microstrip lines with different parameters and dimensions of the dielectric substrate. Agreement with the results obtained in the literature are shown, as well as experimental results. In some cases, the convergence analysis is also performed by considering the limiting conditions, like particular cases of isotropic materials or structures with dielectric of infinite size found in the literature. The numerical convergence of the formulation is also analyzed. Finally, conclusions and suggestions for the continuity of this work are presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, the Markov chain will be the tool used in the modeling and analysis of convergence of the genetic algorithm, both the standard version as for the other versions that allows the genetic algorithm. In addition, we intend to compare the performance of the standard version with the fuzzy version, believing that this version gives the genetic algorithm a great ability to find a global optimum, own the global optimization algorithms. The choice of this algorithm is due to the fact that it has become, over the past thirty yares, one of the more importan tool used to find a solution of de optimization problem. This choice is due to its effectiveness in finding a good quality solution to the problem, considering that the knowledge of a good quality solution becomes acceptable given that there may not be another algorithm able to get the optimal solution for many of these problems. However, this algorithm can be set, taking into account, that it is not only dependent on how the problem is represented as but also some of the operators are defined, to the standard version of this, when the parameters are kept fixed, to their versions with variables parameters. Therefore to achieve good performance with the aforementioned algorithm is necessary that it has an adequate criterion in the choice of its parameters, especially the rate of mutation and crossover rate or even the size of the population. It is important to remember that those implementations in which parameters are kept fixed throughout the execution, the modeling algorithm by Markov chain results in a homogeneous chain and when it allows the variation of parameters during the execution, the Markov chain that models becomes be non - homogeneous. Therefore, in an attempt to improve the algorithm performance, few studies have tried to make the setting of the parameters through strategies that capture the intrinsic characteristics of the problem. These characteristics are extracted from the present state of execution, in order to identify and preserve a pattern related to a solution of good quality and at the same time that standard discarding of low quality. Strategies for feature extraction can either use precise techniques as fuzzy techniques, in the latter case being made through a fuzzy controller. A Markov chain is used for modeling and convergence analysis of the algorithm, both in its standard version as for the other. In order to evaluate the performance of a non-homogeneous algorithm tests will be applied to compare the standard fuzzy algorithm with the genetic algorithm, and the rate of change adjusted by a fuzzy controller. To do so, pick up optimization problems whose number of solutions varies exponentially with the number of variables

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recentemente diversas técnicas de computação evolucionárias têm sido utilizadas em áreas como estimação de parâmetros de processos dinâmicos lineares e não lineares ou até sujeitos a incertezas. Isso motiva a utilização de algoritmos como o otimizador por nuvem de partículas (PSO) nas referidas áreas do conhecimento. Porém, pouco se sabe sobre a convergência desse algoritmo e, principalmente, as análises e estudos realizados têm se concentrado em resultados experimentais. Por isso, é objetivo deste trabalho propor uma nova estrutura para o PSO que permita analisar melhor a convergência do algoritmo de forma analítica. Para isso, o PSO é reestruturado para assumir uma forma matricial e reformulado como um sistema linear por partes. As partes serão analisadas de forma separada e será proposta a inserção de um fator de esquecimento que garante que a parte mais significativa deste sistema possua autovalores dentro do círculo de raio unitário. Também será realizada a análise da convergência do algoritmo como um todo, utilizando um critério de convergência quase certa, aplicável a sistemas chaveados. Na sequência, serão realizados testes experimentais de maneira a verificar o comportamento dos autovalores após a inserção do fator de esquecimento. Posteriormente, os algoritmos de identificação de parâmetros tradicionais serão combinados com o PSO matricial, de maneira a tornar os resultados da identificação tão bons ou melhores que a identificação apenas com o PSO ou, apenas com os algoritmos tradicionais. Os resultados mostram a convergência das partículas em uma região delimitada e que as funções obtidas após a combinação do algoritmo PSO matricial com os algoritmos convencionais, apresentam maior generalização para o sistema apresentado. As conclusões a que se chega é que a hibridização, apesar de limitar a busca por uma partícula mais apta do PSO, permite um desempenho mínimo para o algoritmo e ainda possibilita melhorar o resultado obtido com os algoritmos tradicionais, permitindo a representação do sistema aproximado em quantidades maiores de frequências.