31 resultados para Continuous flow injection system, FIAlab 2600

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuous gas lift method is the main artificial lifting method used in the oil industry for submarine wells, due to its robustness and the large range of flow rate that the well might operate. Nowadays, there is a huge amount of wells producing under this mechanism. This method of elevation has a slow dynamics due to the transients and a correlation between the injected gas rate and the of produced oil rate. Electronics controllers have been used to adjust many parameters of the oil wells and also to improve the efficiency of the gas lift injection system. This paper presents a intelligent control system applied to continuous gas injection in wells, based in production s rules, that has the target of keeping the wells producing during the maximum period of time, in its best operational condition, and doing automatically all necessary adjustments when occurs some disturbance in the system. The author also describes the application of the intelligent control system as a tool to control the flow pressure in the botton of the well (Pwf). In this case, the control system actuates in the surface control valve

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After the decline of production from natural energy of the reservoir, the methods of enhanced oil recovery, which methods result from the application of special processes such as chemical injection, miscible gases, thermal and others can be applied. The advanced recovery method with alternating - CO2 injection WAG uses the injection of water and gas, normally miscible that will come in contact with the stock oil. In Brazil with the discovery of pre-salt layer that gas gained prominence. The amount of CO2 present in the oil produced in the pre-salt layer, as well as some reservoirs is one of the challenges to be overcome in relation to sustainable production once this gas needs to be processed in some way. Many targets for CO2 are proposed by researchers to describe some alternatives to the use of CO2 gas produced such as enhanced recovery, storage depleted fields, salt caverns storage and marketing of CO2 even in plants. The largest oil discoveries in Brazil have recently been made by Petrobras in the pre -salt layer located between the states of Santa Catarina and Espírito Santo, where he met large volumes of light oil with a density of approximately 28 ° API, low acidity and low sulfur content. This oil that has a large amount of dissolved CO2 and thus a pioneering solution for the fate of this gas comes with an advanced recovery. The objective of this research is to analyze which parameters had the greatest influence on the enhanced recovery process. The simulations were performed using the "GEM" module of the Computer Modelling Group, with the aim of studying the advanced recovery method in question. For this work, semi - synthetic models were used with reservoir and fluid data that can be extrapolated to practical situations in the Brazilian Northeast. The results showed the influence of the alternating injection of water and gas on the recovery factor and flow rate of oil production process, when compared to primary recovery and continuous water injection or continuous gas injection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many pollutants dumped in waterways, such as dyes and pesticides, have become so ubiquitous that they represent a serious threat to human health. The electrochemical oxidation is presented as an alternative clean, efficient and economic degradation of wastewater containing organic compounds and a number of advantages of this technique is to just not make use of chemical reagents, since only electrical energy is consumed during the removal of pollutants organic. However, despite being a promising alternative, still needs some tweaking in order to obtain better efficiency in the elimination of persistent pollutants. Thus, this study sought a relationship between a recently discovered phenomenon that reflects the participation of dissolved oxygen in solution in the electrochemical oxidation process, as an anomaly, present a kinetic model that shows instantaneous current efficiency (ICE) above 100% limited by theory, manifested for some experiments with phenolic compounds with H2SO4 or HClO4 as supporting electrolyte with electrodes under anodic oxidation on boron doped diamond (BDD). Therefore it was necessary to reproduce the data ICE exposes the fault model, and thus the 2-naphthol was used as phenolic compound to be oxidised at concentrations of 9, 12 and 15 mmol L-1, and H2SO4 and HClO4 to 1 mol L-1 as a supporting electrolyte under a current density of 30 mA cm-2 in an electrochemical reactor for continuous flow disk configuration, and equipped with anodes DDB at room temperature (25 oC). Experiments were performed using N2 like as purge gas for eliminate oxygen dissolved in solution so that its influence in the system was studied. After exposure of the anomaly of the ICE model and investigation of its relationship with dissolved O2, the data could be treated, making it possible for confirmation. But not only that, the data obtained from eletranálise and spectroscopic analysis suggest the involvement of other strongly oxidizing species (O3 (ozone) and O radicals and O2 -), since the dissolved O2 can be consumed during the formation of new strong oxidizing species, not considered until now, something that needs to be investigated by more accurate methods that we may know a little more of this system. Currently the performance of the electrocatalytic process is established by a complex interaction between different parameters that can be optimized, so it is necessary to the implementation of theoretical models, which are the conceptual lens with which researchers see

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing an efficient methodology for oil recovery is extremely important . Within the range of enh anced oil recovery, known as EOR, the injection of polymer solutions becomes effective in controlling the mobility of displacing fluid . This method consists of adding polymers to the injection water to increase its viscosity, so that more water diffuses in to the porous medium and increasing the sweep efficiency in the reservoir. This work is studied by numerical simulation , application of the injection polymer solution in a homogeneous reservoir , semisynthetic with similar characteristics to the reservoirs of the Brazilian Northeast , numerical simulations were performed using thermal simulator STARS from CMG (Computer Modelling Group ). The study aimed to analyze the influence of some parameters on the behavior of reservoir oil production, with the response to cumulative production. Simulations were performed to analyze the influence of water injection, polymer solution and alternating injection of water banks and polymer solution, comparing the results for each simulated condition. The primary outcomes were: oil viscosity, percentage of injected polymer, polymer viscosity and flow rate of water injection. The evaluation of the influence of variables consisted of a complete experimental design followed a Pareto analysis for the purpose of pointing out which va riables would be most influential on the response represented b y the cumulative oil production . It was found that all variables significantly influenced the recovery of oil and the injection of polymer solution on an ongoing basis is more efficient for the cumulative production compared to oil recovery by continuous water injection. The primary recovery show ed low levels of oil production , water injection significantly improves the pro duction of oil in the reservoir , but the injection of polymer solution em erges as a new methodology to increase the production of oil, increasing the life of the well and possible reduction of water produced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical technologies have been proposed as a promising alternative for the treatment of effluents and contaminated soils. Therefore, the objective of this work was to study the treatment of contaminated soils and wastewaters using electrochemical technologies. Thus, the study regarding the scale-up of the electrochemical system with continuous flow treatment of wastewater of the petrochemical industry was investigated using platinum electrodes supported on titanium (Ti / Pt), and boron-doped diamond (BDD). The results clearly showed that under the operating conditions studied and electrocatalytic materials employed, the better removal efficiency was achieved with BDD electrode reducing the chemical oxygen demand (COD) from 2746 mg L-1 to 200 mg L-1 in 5 h consuming 56.2 kWh m-3 . The decontamination of soils and effluents by petrochemical products was evaluated by studying the effects of electrokinetic remediation for removal of total petroleum hydrocarbons (HTP) from contaminated soil with diesel. The efficiency of this process was dependent on the electrolyte used Na2SO4 (96.46%), citric acid (81.36%) and NaOH (68.03%) for 15 days. Furthermore, the effluent after treatment of the soil was treated by electrochemical oxidation, achieving a good elimination of the organic polluting load dissolved. Depending on the physical behavior of wastewater contaminated with oil (emulsified state); atrazine emulsified effluents were investigated. The main characteristics of the effluent produced during the washing of contaminated soil were studied, being dependent on the surfactant dosage used; which determined its electrolytic treatment with BDD. The electrochemical oxidation of emulsified effluent of atrazine was efficient, but the key to the treatment is reducing the size of micelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it shoulds be considered in the projects of continuous steam injection. For many years, the gravitational segregation was not adequately considered in the calculation procedures in Reservoir Engineering. The effect of the gravity causes the segregation of fluids inside the porous media according to their densities. The results of simulation arising from reservoirs could provide the ability to deal with the gravity, and it became apparent that the effects of the gravity could significantly affect the performance of the reservoir. It know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially the steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses the influence of some parameters of the rock-reservoir in segregation as viscosity, permeability, thickness, cover gas, porosity. From a model that shows the phenomenon with greater intensity, optimized some operational parameters as the rate flow rate steam, distance between the wells injector-producer, and interval of completion which contributed to the reduction in gravity override, thus increasing the oil recovery. It was shown a greater technical-economic viability for the model of distance between the wells 100 m. The analysis was performed using the simulator of CMG (Computer Modeling Group-Stars 2007.11, in which was observed by iterating between studied variables in heavy oil reservoirs with similar characteristics to Brazilian Northeast

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After the decline of production from natural energy of the reservoir, the methods of enhanced oil recovery, which methods result from the application of special processes such as chemical injection, miscible gases, thermal and others can be applied. The advanced recovery method with alternating - CO2 injection WAG uses the injection of water and gas, normally miscible that will come in contact with the stock oil. In Brazil with the discovery of pre-salt layer that gas gained prominence. The amount of CO2 present in the oil produced in the pre-salt layer, as well as some reservoirs is one of the challenges to be overcome in relation to sustainable production once this gas needs to be processed in some way. Many targets for CO2 are proposed by researchers to describe some alternatives to the use of CO2 gas produced such as enhanced recovery, storage depleted fields, salt caverns storage and marketing of CO2 even in plants. The largest oil discoveries in Brazil have recently been made by Petrobras in the pre -salt layer located between the states of Santa Catarina and Espírito Santo, where he met large volumes of light oil with a density of approximately 28 ° API, low acidity and low sulfur content. This oil that has a large amount of dissolved CO2 and thus a pioneering solution for the fate of this gas comes with an advanced recovery. The objective of this research is to analyze which parameters had the greatest influence on the enhanced recovery process. The simulations were performed using the "GEM" module of the Computer Modelling Group, with the aim of studying the advanced recovery method in question. For this work, semi - synthetic models were used with reservoir and fluid data that can be extrapolated to practical situations in the Brazilian Northeast. The results showed the influence of the alternating injection of water and gas on the recovery factor and flow rate of oil production process, when compared to primary recovery and continuous water injection or continuous gas injection

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study focuses on the building ensemble of Avenida Roberto Freire, a main road in Natal, Brazil, as a material expression of the confluence of various factors among which the following may be emphasized: high level of accessibility due to urban spatial re-structuring and the growth of the real estate market, in view of the increasing number of consumers, who arrived in Natal within the last decades. The intense urban modification process that has been going on in Natal since at least the 1980s, has engendered the formation of long axial lines which express the expansion dynamics and some of the forces subjacent to it. Avenida Roberto Freire has been an iconic example of an urban thoroughfare where architecture becomes primarily a communication support that can be perceived by fast moving passers-by, what brings it close to the venturian concept of strip (Venturi at al, 1972). The building types that line the road not only respond to the dynamics in process but also contribute to intensify it, as they house a variety of uses which attract people and generate more movement. The dynamics is further strengthened by the action of the real estate business which benefits from the increase of highly accessible locations, and from the private and public investments and incentives to tourism that aim to insert this city into the globalized world. Although the intention of reconstituting part of the history of density increase on this avenue in a diachronical perspective was attempted within the limits of the available references and documentation, the central contribution of this study is to understand the relations between topological accessibility and the typological nature of the building ensemble. By observing the synchronic morphological frame resulting from the spatial configuration analysis pertinent to this avenue (cf. Hillier and Hanson,1984) and the inventory and classification of the building ensemble there existing, this study aims to understand how architecture responds to accessibility in view of the real estate pressure, boosted by a cosmopolitanizing process brought about by the continuous flow of foreign and Brazilian arrivals as visitors, temporary or permanent residents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke