3 resultados para Contaminated areas

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microorganisms have a vast genetic diversity and they are present throughout the biosphere, however, only about 1% of the species can be cultivated by traditional cultivation techniques. Within this diversity there is a huge pool genetic and biological being explored. The metagenomics has enabled direct access to microbial genome derived from environmental samples using independent methods of cultivation. The methodology enables to obtain functional information about the proteins, as well as identify potential products with biotechnological interest and new industrially exploitable biological resources, such as new solutions to environmental impacts. Oil-contaminated areas are characterized by a large accumulation of hydrocarbons and surfactants may be used for bioremediation. Thus, the metagenomic approach was used in this study in order to select genes involved in the degradation and hydrocarbon emulsification. In a previous work, the environmental DNA (eDNA) was extracted from soil samples collected from two different areas (Caatinga and Saline River) of Rio Grande do Norte (Brazil), the metagenomic libraries were constructed and functionally analyzed. The clone able to degrade the oil was evaluated for the ability to synthesize biosurfactants. The sequence analysis revealed an ORF with 897 bp, 298 amino acids and a protein with around 34 kDa. The search for homology in GenBank revealed sequence similarity with a hypothetical protein of representatives Halobacteriaceae family, who were recently shown as strains producing biosurfactants. The presence of the inserted coding sequence and the acquired phenotype was confirmed. Primers were designed and the ORF amplified by PCR. The ORF was subcloned into pETDuet-1 expression vector for subsequent purification of the protein of interest containing a histidine tail. The tests performed to confirm the biosurfactant activity and the ability of hydrocarbon degradation showed positive results. The immunodetection test (western blot) using the monoclonal AntiHis® confirmed the presence of the environmental protein. This study was the first to report a possible protein with biosurfactant activity obtained from a metagenomic approach

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Activities that have fuel subterranean storage system are considered potentially polluting fuels by CONAMA Resolution 273, due to the possibility of leak, outpouring and overflow of fuel into the ground. Being even more worrying when contaminate groundwater for public supply, as the case of Natal City. For this reason, the Public Ministry/RN, in partnership with UFRN, developed the project environmental suitability of Gas stations in Natal, of which 36% showed evidence of contamination. This paper describes the four stages of the management of contaminated areas: preliminary assessment of environmental liabilities, detailed confirmatory investigation of the contamination, risk analysis to human health (RBCA), as well as the remediation plan of degraded areas. Therefore it is presented a case study. For the area investigated has been proposed a mathematical method to estimate the volume of LNAPL by a free CAD software (ScketchUp) and compare it with the partition method for grid area. Were also performed 3D graphics designs of feathers contamination. Research results showed that passive benzene contamination in groundwater was 2791.77 μg/L, when the maximum allowed by CONAMA Resolution 420 is 5 μg/L which is the potability standards. The individual and cumulative risks were calculated from 4.4 x10-3, both above the limits of 1.0 x10-5 or by RBCA 1.0 x10-6 by the Public Ministry/RN. Corrective action points that remediation of dissolved phase benzene is expected to reach a concentration of 25 μg/L, based on carcinogenic risk for ingestion of groundwater by residents residential, diverging legislation. According to the proposed model, the volume of LNAPL using the ScketchUp was 17.59 m3, while by the grid partitioning method was 14.02 m3. Because of the low recovery, the expected removal of LNAPL is 11 years, if the multiphase extraction system installed in the enterprise is not optimized