54 resultados para Concentração de nutrientes
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In the semiarid region of northeastern of Brazil, the reservoirs are vulnerable to water level seasonal fluctuations, they re related to the hydrological cycle. The rain periods are irregular and there are long periods of drought that increases eutrophication process. That happens because of the water level s reduction and nutrient concentration. The Boqueirao, located in northeastern Brazil , is a mesotrophic reservoir. The reservoir is naturally susceptible to deterioration of water quality. This happens because of the potential diffuse sources arising from the use and occupation of the basin, associated with shallow soil caatinga biome and highly vulnerable to erosion. This study aimed to analyze the influence of the use and occupation of the area around and the water quality of the watershed. A study of the area around the Boqueirão was performed, taking the potentially polluting activities. Limnological variables were monitored monthly in 3 points of the reservoir to assess the water quality. Was evidenced an event of prolonged drought, with rainfall below the historical average for the year of study. By the index of water quality, the watershed was classified as " good " during the whole year of 2012. According to the trophic index adopted the reservoir is characterized as mesotrophic. The main anthropogenic impacts identified in the soil were arboreal selective logging, mining, diffuse contribution of residues from agricultural and livestock activities. The lack of precipitation and the degradation of the surrounding area, affect negatively the water quality, requiring immediate control to prevent degradation of the watershed . Although there wasn t a majority polluting activity in the region. The total of several impacting activities, the high susceptibility of the soil and the selective clearing of caatinga vegetation can accelerate the natural process of eutrophication in the water body
Resumo:
Droughts are climatic phenomena whose frequency has increased in the last decades and also compromised drinkable water supplies in semiarid regions. The lack of rain combined with high evaporation rates promotes a significant reduction of the volume of reservoirs in these regions. Shallower conditions favors nutrients concentration and phytoplankton overgrowth, including potentially toxic cyanobacteria blooming. Therefore, there is a tendency to the intensification of eutrophication in those reservoirs during drought periods. Phytoplankton can respond quickly to environmental conditions related to light and nutrient availability by changes in algal biomass and composition, therefore it is considered a good predictor of environmental variables. Two functional approaches - Reynolds’s Functional Groups (FG) and Kruk’s Morphologically Based Functional Groups (MBFG) - were used to assess which environmental variables were responsible for phytoplankton dynamics, in addition to compare which functional approach explains environmental changes better. This study highlights that the reduction of 90% in the volume of a tropical reservoir of Brazilian semi-arid region, as well as light limitation and nutrient increase, can promote phytoplankton overgrowth. Multivariate analyses using both functional approaches indicated a clear separation between high volumes and low volumes conditions, showing that light and nutrient availability were the main variables that better explained the combination of functional groups. The composition of phytoplankton assemblage changed from species of meso-eutrophic habitats (FG: F and J; MBFG: VI), to organisms of eutrophic and turbid environments (FG: SN and M; MBFG: VIII and VII) during shallower conditions. Both ecological approaches described properly the phytoplankton dynamics according to light and trophic state alterations related to the water volume reduction, therefore they can be considered as equivalent approaches for using in similar environments.
Resumo:
Human activities alter soil features, causing the deterioration of its quality. Land use and occupation in drainage basins of water supply reservoirs can change the environmental soil quality and, thus, lead to the expansion of the soil potential of being a diffuse pollution source. In the Brazilian semiarid region, the soils are generally shallow with high susceptibility to erosion, favoring the sediment and nutrients input into the superficial waterbodies, contributing to the eutrophication process. Moreover, this region has high temperatures and high evapotranspiration rates, that are generally higher than the precipitation rates, causing a negative hydric balance and big volume losses by evaporation. The water volume reduction increases the nutrients’ concentration and, therefore, exacerbates the eutrophication process, deteriorating the water quality. Thereby, we hypothesized that the eutrophication process of semiarid reservoirs is intensified both by the extreme climatic events of prolonged drought, and by the diffuse pollution due to the basin land use and occupation. The study aimed to test whether the land use and occupation activities of the basin and the severe drought events intensify the eutrophication process of a semiarid tropical reservoir. To verify the influence of human activities carried out in the water supply of drainage basin on the soil quality and the eutrophication process, we conducted the mapping of the kind of use and occupation, as well the calculation of erosion for each activity and the soil quality evaluation of the riparian zone and water quality of the water supply. For the water analyses, the samplings were carried out monthly in the deeper point, near dam. For the soil, deformed composite samples were taken for the physical and chemical attributes analysis, according to the identified land use and occupation classes. The results showed that extreme droughts drastically reduces the water volume and elevates the nutrients concentration, contributing, thus, to a bigger degradation of water quality. Furthermore, we verified that human activities in the drainage basin promote the diffuse pollution, by increasing the soil susceptibility to erosion and nutrients contents. Summarizing, our results support the investigated hypothesis that activities of land use and occupation and extreme drought generate a combined effect that provide the intensification of eutrophication process of semiarid reservoirs.
Resumo:
The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent
Resumo:
The increasing of pollution in aquatic ecosystems in the last decades has caused an expansion of eutrophication and loss of water quality for human consumption. The increase of frequency and intensity of cyanobacteria blooms have been recognized as a major problem connected to water quality and eutrophication. The knowledge of environmental factors controlling these blooms is a key step towards the management for recovering aquatic ecosystems from eutrophic conditions. Primary productivity in aquatic ecosystems is dependent on light and nutrients availability. In the present work we evaluated the relative importance of the concentration of major nutrients, such as phosphorus and nitrogen, and light for phytoplankton growth in the main water reservoir of Rio Grande do Norte State, named Engenheiro Armando Ribeiro Gonçalves (EARG), which is an eutrophic system, dominated by potentially toxic cyanobacteria populations. Limitation of phytoplankton growth was evaluated through bioassays using differential enrichment of nutrients (N and/or P) under two light conditions (low light and high light) and monthly monitoring of chlorophyll-a and nutrients (total nitrogen and phosphorus) concentrations, and water transparency (Secchi depth) at the pelagic region. Our results confirm that EARG reservoir is an eutrophic system with a low water quality. Results of bioassays on the growth of phytoplankton limitation (N or P) were conflicting with the results predicted by the TN:TP ratios, which indicates that these ratios were not a good indicator of algal growth limitation. Nitrogen was the limiting nutrient, considering both frequency and magnitude. Light and hidrology affected phytoplankton response to nutrient enrichment. The extreme eutrophic conditions of this reservoir, dominated by cyanobacteria blooms, demand urgent managing strategies in order to guarantee the multiple uses for this system, including water supply for human population. Although nitrogen is the limiting nutrient, an effective management program must focus on the reduction of both phosphorus and nitrogen input
Resumo:
The omnivorous filter-feeding fish, Nile tilapia (Oreochromis niloticus), can have negative effects on water quality enhancing the eutrophication process. These effects depend on the nutrient enrichment level in the water. We carried out a mesocosm experiment for five weeks in a tropical man-made lake in Brazil to test ifthe effects of tilapias depend on of the level of nutrient enrichment. The experiment lasted for 5 weeks and a factorial 2x5 experimental design was used where the presence and absence of tilapias were manipulated in combination to 5 different levels of nutrient load in a total of 10 treatments. A two way repeated measure ANOVA was performed to evaluate the effects of time (t), tilapia (F), nutrients (NP) and the interactions among these factors on: chlorophyll a, water transparency, total phosphorous, total nitrogen, N:P ratio, zooplankton biomass and phytoplankton biovolume. The tilapia effect was evident, but nutrient enrichment didn t have any effect on the variables analyzed. Tilapia decreased the water transparency, total zooplankton biomass, calanoid copepod biomass, nauplii copepod biomass and cladocerans biomass. On the other hand, tilapia had no effect on phytoplankton biovolume. This lack of effect on phytoplankton is probably due to tilapia grazing that may counteract the positive effect of tilapia on phytoplankton via trophic cascades and nutrient recycling. Hence, a reduction in tilapia stock would not be an effective way to reduce phytoplankton biomass and improve water quality
Resumo:
The objective of this study was to examine the growth of Gracilaria cervicornis cultured in a shrimp (Litopenaeus vannamei) pond and to determine the absorption efficiency and the kinetics parameters (Vmax, Ks e Vmax:Ks) of this macroalgae for the nutrients N-NO3-, N-NH4+ and P-PO4-3, aiming at its use as bioremediatory of eutrophicated environments. For this study, two experiments (field and laboratory) were developed. In the field study, the seaweed was examined in relation to the growth and the biomass. In the laboratory experiment, the absorption efficiency of G. cervicornis was measured through the monitoring of the concentration of the three nutrients (N-NO3-, N-NH4+ e P-PO4-3) during 5 hours and the kinetic parameters were determined through the formula of Michaelis-Menten. The results obtained in this study demonstrated that G. cervicornis benefited from the available nutrients in the pond, increasing 52.4% of its biomass value after 30 days of culture. It was evidenced that the variability of the biomass could be explained through the salinity, availability of light (transparency and solid particle in suspension) and concentration of N-NO3- in the environment. In the laboratory experiment, the highest absorption efficiency was found in the treatments with low concentration (5 µmol.L-1), being evidenced a reduction of up to 85,3%, 97,5% and 81,2% of N-NH4+, N-NO3- and P-PO43-, respectively. Regarding the kinetic parameters, G. cervicornis presented better ability in absorbing N-NH4+ in high concentrations (Vmax = 158,5 µmol g-1 dry wt h-1) and P-PO43- in low concentrations (Ks = 5 µmol.L-1 e Vmax:Ks = 10,3). The results of this study show that G. cervicornis could be cultivated in shrimp ponds, presents a good capacity of absorption for the tested nutrients and is a promising candidate for biorremediation in shrimp pond effluent
Resumo:
This study aimed to describe the spatial and temporal patterns of variation in trophic state and its relation with the structure and dynamics of planktonic community of a large reservoir located in semi-arid tropical region of Northeast Brazil. The reservoir Armando Ribeiro Gonçalves is the biggest reservoir of the Rio Grande do Norte State and is responsible for about 53% of all surface water accumulated in the State. The samples of water and plankton were taken monthly in 10 points distributed throughout the longitudinal axis of the reservoir and over a full hydrological cycle. The samples were collected to determine concentrations of total phosphorus, total nitrogen, chlorophyll a and suspended solids (fixed and volatile) and for determining the composition and abundance of phytoplanktonic and zooplanktonic species. During the study period, the reservoir was characterized as eutrophic and there was no trend of increasing the trophic state of the reservoir in the period of drought. The concentrations of total phosphorus and suspended fixed solids decreased towards the dam while the N:P ratios increased in the same direction due to the reduction in the phosphorus concentrations and relative constancy in the nitrogen concentrations. The N:P ratios observed were indicative of greater limitation by phosphorus than by nitrogen. However, as concentrations of both nutrients were high and the water transparency was very low, with secchi depth usually lower than one meter, it seems likely that the planktonic primary production of the reservoir is more limited by the availability of light than the availability of nutrients. High nutrient concentrations coupled with low availability of light may explain the continuing dominance of filamentous cyanobacteria such as Cylindrospermopsis raciborskii in the plankton of the reservoir.These cyanobacteria are potentially toxic and pose a serious environmental problem because it compromises the water quality for public supply, recreation and fishing when present in high densities as in this study. The mesozooplankton of the reservoir was dominated by the calanoid Notodiaptomus cearensis and the cladoceran Diaphanosoma spinulosum. In general, the structure of zooplankton community seems to be particularly influenced by the spatial variation of cyanobacteria. The results of the regression analyses show that both the chlorophyll a concentrations and the cyanobacteria biovolume were more strongly correlated with the nitrogen than with phosphorus and that the water transparency was more strongly correlated with algal biomass than with other sources of turbidity. The maximum load of phosphorus to attain the maximum permissible concentration of total P in the reservoir was estimated in 63.2 tonnes P/ year. The current external P load to the reservoir is estimated in 324 tonnes P / year and must be severely reduced to improve the water quality for water supply and allow the implementation of aquaculture projects that could contribute to the socio-economic development of the region
Resumo:
The major aim of this study was to test the hypothesis that the introduction of the Nile tilapia (Oreochromis niloticus) and the enrichment with nutrients (N and P) interact synergistically to change the structure of plankton communities, increase phytoplankton biomass and decrease water transparency of a semi-arid tropical reservoir. One field experiment was performed during five weeks in twenty enclosures (8m3) to where four treatments were randomly allocated: with tilapia addition (T), with nutrients addition (NP), with tilapia and nutrients addition (T+NP) and a control treatment with no tilapia or nutrients addition (C). A two-way repeated measures ANOVA was done to test for time (t), tilapia (T) and nutrient (NP) effects and their interaction on water transparency, total phosphorus, total nitrogen, phytoplankton and zooplankton. The results show that there was no effect of nutrient addition on these variables but significant fish effects on the biomass of total zooplankton, nauplii, rotifers, cladocerans and calanoid copepods, on the biovolume of Bacillariophyta, Zygnemaphyceae and large algae (GALD ≥ 50 μm) and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased the water transparency while nutrient enrichment increased the biomass of zooplankton (rotifers) but only in the absence of tilapia. In conclusion, the influence of fish on the reservoir plankton community and water transparency was greater than that of nutrient loading. This finding suggests that biomanipulation should be a greater priority in the restoration of eutrophic reservoirs in tropical semi-arid regions
Resumo:
It is important to evaluate the quality of water for proper management of these resources, since the increase of environmental degradation and the multiple use of water resources are decreasing the quality of water consumed by living beings. The objective of this study was to characterize the phytoplankton community and its variations during periods of dray and rain in Jiqui Lake located in Parnamirim, RN. It was also aimed to analyze the physical and chemical factors of this environment, in order to contribute to the knowledge of water quality used for human consumption. The collection of water samples were carried out in September 2008 to August 2009. The collection of the phytoplankton community was carried out in four sampling sites (surface, bottom, margin of the lake without macrophytes and site dominated by macrophytes). Phytoplankton was collected using plankton net of 20m. The analysis of nutrients and identification of phytoplankton were performed in the laboratory. The results indicate that concentration of chlorophyll a was high in the bottom with mean value of 1.07 μgL-1 (SD ± 1.61). During the study period there was a dominance of the following species: Euglena gracilis, Trachelomonas sp, Cyclotellas sp, Gomphonema apuncto, Navicula cuspidata var. cuspidata, Navicula sp, Rhopalodia gibba. There was homogeneity between limnological values in the four study sites, with significant difference between the periods of drought and rain. The Jiqui Lake is considered oligotrophic due to its low concentrations of chlorophyll a, high transparency and low levels of nutrients. The values of BOD and chlorophyll a concentration remained below the permitted standards existing for freshwaters in Brazil, thus the water from Lake Jiqui is of good quality, suitable for human consumption.
Resumo:
Marine shrimp farming has grown exponentially during the last years in Brazil. In spite of the promising economical situation, this activity is facing an increasing criticism due to its environmental impact. Thus, the necessity of alternatives to mitigate environmental degradation caused by this activity. An alternative that is being studied is the policulture that is the integrated culture of two or more organisms, normally one of them a filtering organism. Among filtering organisms, macroalgae are very practicable because they are efficient in the removal of the exceeding nutrients of the water and do not leave residues in the water. Besides, the integrated culture with macroalgae allows the economical exploration of the seaweed (for the manufacture of jelly and jam, for the dairy industry, pharmaceuticals, etc.) along with possibility of a sustainable aquaculture. In the present experiment, the development of the seaweed Gracilaria birdiae, the influence and tolerance of this species to the environmental parameters, and its absorption efficiency in relation with the three kinds of macronutrients (NH4+, NO3- and PO4-3) found in the effluents of marine shrimp farming was studied. The experiment was divided in two parts: a laboratorial part and one part carried under natural conditions. The water used in the laboratory trial was collected in the shrimp ponds of Tecnarão farm and distributed in aquaria containing 20 g of G. birdiae. In the field trial, 0.5 kg of G. birdiae was inserted in PVC cages cultivated in the farm. The results of the study showed a modest growth of G. birdiae, probably due to its low tolerance to highly eutrophicated environments. However, the removal of nutrients was very expressive. Ammonia was reduced in approximately 34 %. Ortho-phosphate showed a reduction of 93.5 %. The capacity of biofiltration of the NO3- by the macro algae was of 100 %, showing that G. birdiae is a seaweed-filtered with a high level of removal for this nutrient under laboratorial conditions. In spite of the low growth of the macro algae in the experiment, the results in relation to the removal of nutrients of the water was encouraging, suggesting that this species can be an efficient biofilter and thus, a strong candidate to be used in a sustainable aquaculture
Resumo:
Dentre as macroalgas capazes de absorver altas concentrações de N e P dissolvidos na água, destaca-se a Chlorophyta Ulva lactuca, bastante adaptável e resistente às adversidades ambientais, como grandes variações de temperatura, salinidade, matéria orgânica e metais pesados. Trata-se também de uma espécie bastante comum nas áreas intertidais do litoral norte-riograndense. Devido a suas características ecológicas, fisiológicas e nutricionais, foi avaliado nesse estudo, o seu potencial como biofiltro na redução de NH4+, NO3- e PO4-2, tanto em condições controladas como também em um viveiro de camarão. No experimento laboratorial, foram utilizados quatro aquários de vidro de 30 x 20 x 20cm com 10L de água, sendo três aquários experimentais contendo 20g de U. lactuca e um controle. O acréscimo de biomassa foi de 2,92g (22,92 ± 6,29g; p < 0,05) em relação ao inóculo inicial de 20g, sob temperatura (28,50 ± 0,58ºC), salinidade (35,00 ± 0,00 ), pH (8,26 ± 0,02) e luz constante (250 μmol.m2s-1). O crescimento positivo (1,78 ± 4,38%dia-1; p < 0,05), juntamente com a alta eficiência de absorção de amônio (83%; p < 0,001), nitrato (83%; p < 0,001) e ortofosfato (53%; p < 0,001), demonstrou que, nessas condições, a Ulva lactuca absorveu os nutrientes e aumentou sua biomassa. Já no experimento de campo, realizado na fazenda TECNARÃO, situada no município de Arez/RN (06° 11 40 Latitude Sul, e 35º 09 37 Longitude Oeste), foram utilizadas três gaiolas de PVC, posicionadas a 12cm da superfície da água, cada uma com dimensões de aproximadamente 59 x 59 x 15cm, onde foram colocadas 200g de U. lactuca. O ganho de biomassa de 3g (203,00 ± 41,02g; p < 0,001) foi muito semelhante às condições controladas, demonstrando a adaptabilidade da espécie em condições ambientais variáveis, onde, apesar da temperatura pouco variável (27,45 ± 0,64ºC), houve progressiva diminuição de salinidade (25 - 15 ), devido ao período de fortes chuvas (34,70 ± 23,78mm). Somado a isso, foram observados vários fatores biológicos interferindo no viveiro, como a presença de epífitas, organismos endofíticos, fouling e a herbivoria por parte dos próprios camarões. Houve aumento nas concentrações de NH4+ (4,36 ± 1,69 μmol.L-1), NO3- (0,17 ± 0,25μmol.L-1) e PO4-2 (0,41 ± 0,13μmol.L-1), coincidindo com o crescimento da espécie até a terceira semana. Todos os parâmetros ambientais analisados, assim como a biomassa e a Taxa de Crescimento Relativo (TCR), obtidos no campo, apresentaram variações altamente significativas (p < 0,001). As correlações observadas entre biomasa e NH4+ (r = 0,82; p < 0,001) e entre biomassa e PO4-2 (r = 0,87; p < 0,001), indicam que esta espécie é capaz de ter um crescimento satisfatório nas condições eutróficas de um viveiro de camarão, sendo possível seu uso como biofiltro.
Resumo:
The intake of adequate quantities of food, including those rich in vitamins, is necessary for a healthy life. The lack of vitamin A has been characterized as a public health problem in developing countries, however, a high intake of vitamin A can result in toxic and teratogenics effects. High concentrations of vitamin A have been observed in the livers of animals. The objective of this study was to assess the levels of retinol in chicken livers and verify the effect of frozen storage on these levels. 64 livers from two chicken strains, Cobb and Ross, were used, came from four different farms. We examined 32 livers from each strain, 8 samples from each farm. Liver sample were homogenized individually, then 4 aliquots were taken from each sample. One of aliquots was analyzed immediately after slaughter (T0), the others were analyzed after 30, 60 and 90 days of storage at -18oC (T30, T60 and T90, respectively). Retinol dosage in the liver was determined by High Performance Liquid Chromatography (HPLC). The levels of retinol varied significantly according to the strain. The mean retinol value in the fresh samples was 6678.0 ± 1337.7 and 8324.1 ± 1158.5 µg/100g in the Cobb and Ross strain, respectively. Values of 4258 ± 918.7 ± 1391.7 and 4650.5 ± 1391.7 μg/100g were found after 90 days of storage for Cobb and Ross strain, respectively. The liver freezing caused a significant reduction in their levels of retinol, causing a loss of up to 44% with respect to fresh livers. The reduction in retinol levels occurred from 30 days of storage. Even with the losses from the frozen, the ingestion of a typical portion of 100 g of liver, regardless the chicken strain analyzed, surpass all recommendations of consumption and the maximum tolerable intake of vitamin A (3000 μg/day) for adults
Resumo:
The vitamins A and E are recognizably important in the initial stages of life and the newborn depends on nutritional adequacy of breast milk to meet their needs. These vitamins share routes of transport to the tissues and antagonistic effects have been observed in animals after supplementation with vitamin A. This study aimed to verify the effect of maternal supplementation with vitamin A megadose (200,000 UI) in the immediate post-partum on the concentration of alpha-tocopherol in colostrum. Healthy parturient women attended at a public maternity natalensis were recruited for the study and divided into two groups: control (n = 37) and supplemented (n = 36). Blood samples of colostrum and milk were collected until 12 hours after delivery. The women of the supplemented group was administered a retynil palmitate capsule and 24 hours after the first collection was obtained the 2nd sample of colostrum in two groups for analysis of retinol and alpha-tocopherol in milk. The mean retinol concentration of 50,7 ± 14,4 μg/dL (Mean ± standard deviation) and alpha-tocopherol of 1217.4 ± 959 mg/dL in the serum indicate the nutritional status biochemical appropriate. Supplementation with retynil palmitate resulted in increase not only retinol levels in the colostrum of the supplemented group (p = 0.002), but also the concentration of alpha-tocopherol (p = 0.04), changing from 1456.6 ± 1095.8 mg/dL to 1804.3 ± 1432.0 mg/dL (milk 0 and 24 respectively) compared to values in the control group, 984.6 ± 750.0 mg/dL and 1175.0 ± 730.8 mg/dL. The women had different responses to supplementation, influenced by baseline levels of retinol in colostrum. Those with previous by low levels of retinol in colostrum (<60 mg/dL) had increased the concentration of alpha-tocopherol in milk, whereas those with adequate levels (> 60 mg/dL), showed a reduction after supplementation. Supplementation with retinol palmitate is an important intervention in situations of high risk for vitamin A deficiency, when considering the need to maternal supplementation, since the excess vitamin can offer unfavorable interactions between nutrients essential for the mother-child group