6 resultados para Compressed air energy storage

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomass is considered the largest renewable energy source that can be used in an environmentally sustainable. From the pyrolysis of biomass is possible to obtain products with higher energy density and better use properties. The liquid resultant of this process is traditionally called bio-oil. The use of infrared burners in industrial applications has many advantages in terms of technical-operational, for example, uniformity in the heat supply in the form of radiation and convection, with a greater control of emissions due to the passage of exhaust gases through a macroporous ceramic bed. This paper presents a commercial infrared burner adapted with an ejector proposed able to burn a hybrid configuration of liquefied petroleum gas (LPG) and bio-oil diluted. The dilution of bio-oil with absolute ethanol aimed to decrease the viscosity of the fluid, and improving the stability and atomization. It was introduced a temperature controller with thermocouple modulating two stages (low heat / high heat), and solenoid valves for fuels supply. The infrared burner has been tested, being the diluted bio-oil atomized, and evaluated its performance by conducting energy balance. The method of thermodynamic analysis to estimate the load was used an aluminum plate located at the exit of combustion gases and the distribution of temperatures measured by thermocouples. The dilution reduced the viscosity of the bio-oil in 75.4% and increased by 11% the lower heating value (LHV) of the same, providing a stable combustion to the burner through the atomizing with compressed air and burns combined with LPG. Injecting the hybrid fuel there was increase in the heat transfer from the plate to the environment in 21.6% and gain useful benefit of 26.7%, due to the improved in the efficiency of the 1st Law of Thermodynamics of infrared burner

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is a case study that reports the construction of metal truss bridge in the river Potengi in Natal, Rio Grande do Norte, between the years 1912 and 1916. From testimonials on steel bridges in Brazil and worldwide including foundations. Documentary research from procurement of projects and contracts was performed. A chronology of construction, with a description of the equipment used and its original budget with the Brazilian government. Still, we used interviews and surveys with experimental sampling / testimonies, laboratory tests. This study aims to analyze historically and technically the Bridge over the River Potengi, emphasizing primarily the construction process, the qualities and characteristics of the materials used and the technological, chemical, mineralogical and microstructural properties of cement and concrete used in its construction. Taking as conclusions that cements pozolônicos ensured a good durability to the concrete in a hundred-year period and that the solution employed with the compressed air caissons was right

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to develop a pilot plant which the main goal is to emulate a flow peak pressure in a separation vessel. Effect similar that is caused by the production in a slug flow in production wells equipped with the artificial lift method plunger lift. The motivation for its development was the need to test in a plant on a smaller scale, a new technique developed to estimate the gas flow in production wells equipped with plunger lift. To develop it, studies about multiphase flow effects, operation methods of artificial lift in plunger lift wells, industrial instrumentation elements, control valves, vessel sizing separators and measurement systems were done. The methodology used was the definition of process flowcharts, its parameters and how the effects needed would be generated for the success of the experiments. Therefore, control valves, the design and construction of vessels and the acquisition of other equipment used were defined. One of the vessels works as a tank of compressed air that is connected to the separation vessel and generates pulses of gas controlled by a on/off valve. With the emulator system ready, several control experiments were made, being the control of peak flow pressure generation and the flow meter the main experiments, this way, it was confirmed the efficiency of the plant usage in the problem that motivated it. It was concluded that the system is capable of generate effects of flow with peak pressure in a primary separation vessel. Studies such as the estimation of gas flow at the exit of the vessel and several academic studies can be done and tested on a smaller scale and then applied in real plants, avoiding waste of time and money.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low voltage solar panels increase the reliability of solar panels due to reduction of in series associations the configurations of photovoltaic cells. The low voltage generation requires DCDC converters devices with high efficiency, enabling raise and regulate the output voltage. This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated photovoltaic system configuration, with and without energy storage as an interface with a DCDC converter, Booster topology. The converter was designed and fabricated using SMD (Surface Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at 14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The system was installed and instrumented for measurement and acquisition of the following data: luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais), solar panel and environment temperatures, solar panel and DC-DC converter output voltages, panel, inverter, and battery charge output currents. The photovoltaic system was initially tested in the laboratory (simulating its functioning in ideal conditions of operation) and then subjected to testing in real field conditions. The panel inclination angle was set at 5.5°, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous variations of temperature, solar luminosities and ra diation on the panel), values of load resistance, lower limit of the maximum power required by the load (20.88 W) were predominant factors that panel does not operate with energy efficiency levels greater than 5 to 6%. The average converter efficiency designed in the field test reached 95%

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico