13 resultados para Comparação de modelos
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
At present, the electricity generation through wind energy has an importance growing in the world, with the existence of very large plans for future wind power installation worldwide. Thus, the increasing the electricity generation through wind power requires, more and more, analysis of studies of interaction between wind parks and electric power systems. This paper has as purposes to implement equivalent models for synchronous wind generators to represent a wind park in ATP program and to check behavior of the models through simulations. Simulations with applications of faults were achieved to evaluate the behavior of voltages of system for each equivalent model, through comparisons between the results of models proposed, to verify if the differences obtained allows the adoption of the simplest model
Resumo:
A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.
Resumo:
A significant observational effort has been directed to investigate the nature of the so-called dark energy. In this dissertation we derive constraints on dark energy models using three different observable: measurements of the Hubble rate H(z) (compiled by Meng et al. in 2015.); distance modulus of 580 Supernovae Type Ia (Union catalog Compilation 2.1, 2011); and the observations of baryon acoustic oscilations (BAO) and the cosmic microwave background (CMB) by using the so-called CMB/BAO of six peaks of BAO (a peak determined through the Survey 6dFGS data, two through the SDSS and three through WiggleZ). The statistical analysis used was the method of the χ2 minimum (marginalized or minimized over h whenever possible) to link the cosmological parameter: m, ω and δω0. These tests were applied in two parameterization of the parameter ω of the equation of state of dark energy, p = ωρ (here, p is the pressure and ρ is the component of energy density). In one, ω is considered constant and less than -1/3, known as XCDM model; in the other the parameter of state equantion varies with the redshift, where we the call model GS. This last model is based on arguments that arise from the theory of cosmological inflation. For comparison it was also made the analysis of model CDM. Comparison of cosmological models with different observations lead to different optimal settings. Thus, to classify the observational viability of different theoretical models we use two criteria information, the Bayesian information criterion (BIC) and the Akaike information criteria (AIC). The Fisher matrix tool was incorporated into our testing to provide us with the uncertainty of the parameters of each theoretical model. We found that the complementarity of tests is necessary inorder we do not have degenerate parametric spaces. Making the minimization process we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are m = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059. Performing a marginalization we found (68%), for the Model XCDM the best fit parameters are m = 0.28 ± 0, 012 and ωX = −1.01 ± 0, 052. While for Model GS the best settings are M = 0.28 ± 0, 011 and δω0 = 0.00 ± 0, 059.
Resumo:
Several clinic evaluations have been possible with radiobiocomplexes labeled with technetium-99m (99mTc). Some natural and synthetic drugs are capable of to interfere on the labeling of blood constituents with 99mTc, as well as on the biodistribution of radiobiocomplexes. Authors have also reported about the toxicity of several natural products. The aim of this study was to compare the effects of the Mentha crispa (hortelã) and of the Hypericum perforatum (hipérico) in different experimental models. On the labeling of red blood cells (RBC) and plasma and cellular proteins with 99mTc, both extracts were capable of to decrease the radioactivity percentage on the cellular compartment and on the fixation on plasma and cellular proteins. On the morphometry of the RBC, only the hortelã was capable to alter the shape and the perimeter/area ratio of the RBC. On the biodistribution of the radiobiocomplex sodium pertechnetate (Na99mTcO4), the hortelã increased the Na99mTcO4 distribution in the kidney, spleen, liver and thyroid, meanwhile the hipérico decreased the Na99mTcO4 distribution in the bone, stomach, lungs and thyroid, and increased the Na99mTcO4 distribution in the pancreas. On the bacterial cultures survival, the hipérico was capable of to protect the bacteria against the stannous chloride (SnCl2) effect. The hipérico did not alter the topology of plasmidial DNA and did not protect the plasmidial DNA against the SnCl2 action. Probably, the effects presented by both extracts could be due to chemical compounds of the extracts that could alter the morphology of the RBC and the plasma membrane ions transport, and/or by phytocomplexes that could be formed with different effects dependent on the biological system considered
Resumo:
The main objective of this thesis was the study of bracing panels of structural masonry, by applying the Finite Element Method and Strut and Tie Method. It was analyzed the following aspects: the effect of orthotropy on the behavior of the panels; distribution of horizontal forces between panels for buildings; comparison between Equivalent Frame and Finite Elements models; panels design with the Strut and Tie Method. The results showed that one should not disregard the orthotropy, otherwise this can lead to models stiffer than the real. Regarding the distribution of horizontal forces, showed that the disregard of lintels and shear deformation leads to significant differences in the simplified model. The results showed also that the models in Finite Element and Equivalent Frame exhibit similar behavior in respect to stiffness of panels and stress distribution over the sessions requested. It was discussing criteria for designing Strut and Tie Method models in one floor panels. Then, the theoretical strength these panels was compared with the rupture strength of panels tested in the literature. The theoretical maximum strength were always less than the rupture strength of the panels obtained in tests, due to the fact that the proposed model cannot represent the behavior of the masonry after the start of the panel cracking due to plasticization of the reinforcement
Resumo:
This work studies the development, implementation and improvement of a macroscopic model to describe the behavior of the spouted bed dryer with continuous feeding for pastes and suspensions drying. This model is based on the CST model (Freire et al., 2009) and the model of Fernandes (2005), whose theoretical foundation is based on macroscopic mass and heat balances for the three phases involved in the process: gas, liquid and solid. Because this technique is quite relevant, the studies of modeling and simulation of spouted bed drying are essential in the analysis of the process as a whole, because through them it is possible to predict and understand the behavior of the process, which contributes significantly to more efficient project and operation. The development and understanding of the phenomena involved in the drying process can be obtained by comparing the experimental data with those from computer simulations. Such knowledge is critical for choosing properly the process conditions in order to obtain a good drying efficiency. Over the past few years, researches and development of works in the field of pastes and suspensions drying in spouted bed has been gaining ground in Brazil. The Particulate Systems Laboratory at Universidade Federal do Rio Grande do Norte, has been developing several researches and generating a huge collection of experimental data concerning the drying of fruit pulps, vegetables pastes, goat milk and suspensions of agro-industrial residues. From this collection, some data of goat milk and residue from acerola (Malpighia glabra L.) drying were collected. For the first time, these data were used for the development and validation of a model that can describe the behavior of spouted bed dryer. Thus, it was possible to model the dryer and to evaluate the influence of process variables (paste feeding, temperature and flow rate of the drying air) in the drying dynamics. We also performed water evaporation experiments in order to understand and to study the behavior of the dryer wall temperature and the evaporation rate. All these analysis will contribute to future works involving the implementation of control strategies in the pastes and suspensions drying. The results obtained in transient analysis were compared with experimental data indicating that this model well represents the process
Resumo:
The great majority of analytical models for extragalactic radio sources suppose self-similarity and can be classified into three types: I, II and III. We have developed a model that represents a generalization of most models found in the literature and showed that these three types are particular cases. The model assumes that the area of the head of the jet varies with the jet size according to a power law and the jet luminosity is a function of time. As it is usually done, the basic hypothesis is that there is an equilibrium between the pressure exerted both by the head of the jet and the cocoon walls and the ram pressure of the ambient medium. The equilibrium equations and energy conservation equation allow us to express the size and width of the source and the pressure in the cocoon as a power law and find the respective exponents. All these assumptions can be used to calculate the evolution of the source size, width and radio luminosity. This can then be compared with the observed width-size relation for radio lobes and the power-size (P-D) diagram of both compact (GPS and CSS) and extended sources from the 3CR catalogue. In this work we introduce two important improvement as compared with a previous work: (1)We have put together a larger sample of both compact and extended radio sources
Resumo:
The separation methods are reduced applications as a result of the operational costs, the low output and the long time to separate the uids. But, these treatment methods are important because of the need for extraction of unwanted contaminants in the oil production. The water and the concentration of oil in water should be minimal (around 40 to 20 ppm) in order to take it to the sea. Because of the need of primary treatment, the objective of this project is to study and implement algorithms for identification of polynomial NARX (Nonlinear Auto-Regressive with Exogenous Input) models in closed loop, implement a structural identification, and compare strategies using PI control and updated on-line NARX predictive models on a combination of three-phase separator in series with three hydro cyclones batteries. The main goal of this project is to: obtain an optimized process of phase separation that will regulate the system, even in the presence of oil gushes; Show that it is possible to get optimized tunings for controllers analyzing the mesh as a whole, and evaluate and compare the strategies of PI and predictive control applied to the process. To accomplish these goals a simulator was used to represent the three phase separator and hydro cyclones. Algorithms were developed for system identification (NARX) using RLS(Recursive Least Square), along with methods for structure models detection. Predictive Control Algorithms were also implemented with NARX model updated on-line, and optimization algorithms using PSO (Particle Swarm Optimization). This project ends with a comparison of results obtained from the use of PI and predictive controllers (both with optimal state through the algorithm of cloud particles) in the simulated system. Thus, concluding that the performed optimizations make the system less sensitive to external perturbations and when optimized, the two controllers show similar results with the assessment of predictive control somewhat less sensitive to disturbances
Resumo:
The physical structural modeling tool is being increasingly used in geology to provide information about the evolutionary stages (nucleation, growth) and geometry of geological structures at various scales. During the simulations of extensional tectonics, modeling provides a better understanding of fault geometry and evolution of the tectonic-stratigraphic architecture of rift basins. In this study a sandbox type apparatus was used to study the nucleation and development of basins influenced by previous structures within the basement, variably oriented as regards to the main extensional axis. Two types of experiments were conducted in order to: (i) simulate the individual (independent) development of half-grabens oriented orthogonal or oblique to the extension direction; (ii) simulate the simultaneous development of such half-grabens, orthogonal or oblique to the extension direction. In both cases the same materials (sand mixed with gypsum) were used and the same boundary conditions were maintained. The results were compared with a natural analogue represented by the Rio do Peixe Basin (one of the eocretaceous interior basins of Northeast Brazil). The obtained models allowed to observe the development of segmented border faults with listric geometry, often forming relay ramps, and the development of inner basins faults that affect only the basal strata, like the ones observed in the seismic sections of the natural analogue. The results confirm the importance of basement tectonic heritage in the geometry of rift depocenters
Resumo:
Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.
Resumo:
A practical approach to estimate rock thermal conductivities is to use rock models based just on the observed or expected rock mineral content. In this study, we evaluate the performances of the Krischer and Esdorn (KE), Hashin and Shtrikman (HS), classic Maxwell (CM), Maxwell-Wiener (MW), and geometric mean (GM) models in reproducing the measures of thermal conductivity of crystalline rocks.We used 1,105 samples of igneous and metamorphic rocks collected in outcroppings of the Borborema Province, Northeastern Brazil. Both thermal conductivity and petrographic modal analysis (percent volumes of quartz, K-feldspar, plagioclase, and sum of mafic minerals) were done. We divided the rocks into two groups: (a) igneous and ortho-derived (or meta-igneous) rocks and (b) metasedimentary rocks. The group of igneous and ortho-derived rocks (939 samples) covers most the lithologies de_ned in the Streckeisen diagram, with higher concentrations in the fields of granite, granodiorite, and tonalite. In the group of metasedimentary rocks (166 samples), it were sampled representative lithologies, usually of low to medium metamorphic grade. We treat the problem of reproducing the measured values of rock conductivity as an inverse problem where, besides the conductivity measurements, the volume fractions of the constituent minerals are known and the effective conductivities of the constituent minerals and model parameters are unknown. The key idea was to identify the model (and its associated estimates of effective mineral conductivities and parameters) that better reproduces the measures of rock conductivity. We evaluate the model performances by the quantity that is equal to the percentage of number of rock samples which estimated conductivities honor the measured conductivities within the tolerance of 15%. In general, for all models, the performances were quite inferior for the metasedimentary rocks (34% < < 65%) as compared with the igneous and ortho-derived rocks (51% < < 70%). For igneous and ortho-derived rocks, all model performances were very similar ( = 70%), except the GM-model that presented a poor performance (51% < < 65%); the KE and HS-models ( = 70%) were slightly superior than the CM and MW-models ( = 67%). The quartz content is the dominant factor in explaining the rock conductivity for igneous and ortho-derived rocks; in particular, using the MW-model the solution is in practice vi UFRN/CCET– Dissertação de mestrado the series association of the quartz content. On the other hand, for metasedimentary rocks, model performances were different and the performance of the KEmodel ( = 65%) was quite superior than the HS ( = 53%), CM (34% < < 42%), MW ( = 40%), and GM (35% < < 42%). The estimated effective mineral conductivities are stable for perturbations both in the rock conductivity measures and in the quartz volume fraction. The fact that the metasedimentary rocks are richer in platy-minerals explains partially the poor model performances, because both the high thermal anisotropy of biotite (one of the most common platy-mineral) and the difficulty in obtaining polished surfaces for measurement coupling when platyminerals are present. Independently of the rock type, both very low and very high values of rock conductivities are hardly explained by rock models based just on rock mineral content.
Resumo:
In the context of climate change over South America (SA) has been observed that the combination of high temperatures and rain more temperatures less rainfall, cause different impacts such as extreme precipitation events, favorable conditions for fires and droughts. As a result, these regions face growing threat of water shortage, local or generalized. Thus, the water availability in Brazil depends largely on the weather and its variations in different time scales. In this sense, the main objective of this research is to study the moisture budget through regional climate models (RCM) from Project Regional Climate Change Assessments for La Plata Basin (CLARIS-LPB) and combine these RCM through two statistical techniques in an attempt to improve prediction on three areas of AS: Amazon (AMZ), Northeast Brazil (NEB) and the Plata Basin (LPB) in past climates (1961-1990) and future (2071-2100). The moisture transport on AS was investigated through the moisture fluxes vertically integrated. The main results showed that the average fluxes of water vapor in the tropics (AMZ and NEB) are higher across the eastern and northern edges, thus indicating that the contributions of the trade winds of the North Atlantic and South are equally important for the entry moisture during the months of JJA and DJF. This configuration was observed in all the models and climates. In comparison climates, it was found that the convergence of the flow of moisture in the past weather was smaller in the future in various regions and seasons. Similarly, the majority of the SPC simulates the future climate, reduced precipitation in tropical regions (AMZ and NEB), and an increase in the LPB region. The second phase of this research was to carry out combination of RCM in more accurately predict precipitation, through the multiple regression techniques for components Main (C.RPC) and convex combination (C.EQM), and then analyze and compare combinations of RCM (ensemble). The results indicated that the combination was better in RPC represent precipitation observed in both climates. Since, in addition to showing values be close to those observed, the technique obtained coefficient of correlation of moderate to strong magnitude in almost every month in different climates and regions, also lower dispersion of data (RMSE). A significant advantage of the combination of methods was the ability to capture extreme events (outliers) for the study regions. In general, it was observed that the wet C.EQM captures more extreme, while C.RPC can capture more extreme dry climates and in the three regions studied.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)