3 resultados para Cobb
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The intake of adequate quantities of food, including those rich in vitamins, is necessary for a healthy life. The lack of vitamin A has been characterized as a public health problem in developing countries, however, a high intake of vitamin A can result in toxic and teratogenics effects. High concentrations of vitamin A have been observed in the livers of animals. The objective of this study was to assess the levels of retinol in chicken livers and verify the effect of frozen storage on these levels. 64 livers from two chicken strains, Cobb and Ross, were used, came from four different farms. We examined 32 livers from each strain, 8 samples from each farm. Liver sample were homogenized individually, then 4 aliquots were taken from each sample. One of aliquots was analyzed immediately after slaughter (T0), the others were analyzed after 30, 60 and 90 days of storage at -18oC (T30, T60 and T90, respectively). Retinol dosage in the liver was determined by High Performance Liquid Chromatography (HPLC). The levels of retinol varied significantly according to the strain. The mean retinol value in the fresh samples was 6678.0 ± 1337.7 and 8324.1 ± 1158.5 µg/100g in the Cobb and Ross strain, respectively. Values of 4258 ± 918.7 ± 1391.7 and 4650.5 ± 1391.7 μg/100g were found after 90 days of storage for Cobb and Ross strain, respectively. The liver freezing caused a significant reduction in their levels of retinol, causing a loss of up to 44% with respect to fresh livers. The reduction in retinol levels occurred from 30 days of storage. Even with the losses from the frozen, the ingestion of a typical portion of 100 g of liver, regardless the chicken strain analyzed, surpass all recommendations of consumption and the maximum tolerable intake of vitamin A (3000 μg/day) for adults
Resumo:
The intake of adequate quantities of food, including those rich in vitamins, is necessary for a healthy life. The lack of vitamin A has been characterized as a public health problem in developing countries, however, a high intake of vitamin A can result in toxic and teratogenics effects. High concentrations of vitamin A have been observed in the livers of animals. The objective of this study was to assess the levels of retinol in chicken livers and verify the effect of frozen storage on these levels. 64 livers from two chicken strains, Cobb and Ross, were used, came from four different farms. We examined 32 livers from each strain, 8 samples from each farm. Liver sample were homogenized individually, then 4 aliquots were taken from each sample. One of aliquots was analyzed immediately after slaughter (T0), the others were analyzed after 30, 60 and 90 days of storage at -18oC (T30, T60 and T90, respectively). Retinol dosage in the liver was determined by High Performance Liquid Chromatography (HPLC). The levels of retinol varied significantly according to the strain. The mean retinol value in the fresh samples was 6678.0 ± 1337.7 and 8324.1 ± 1158.5 µg/100g in the Cobb and Ross strain, respectively. Values of 4258 ± 918.7 ± 1391.7 and 4650.5 ± 1391.7 μg/100g were found after 90 days of storage for Cobb and Ross strain, respectively. The liver freezing caused a significant reduction in their levels of retinol, causing a loss of up to 44% with respect to fresh livers. The reduction in retinol levels occurred from 30 days of storage. Even with the losses from the frozen, the ingestion of a typical portion of 100 g of liver, regardless the chicken strain analyzed, surpass all recommendations of consumption and the maximum tolerable intake of vitamin A (3000 μg/day) for adults
Resumo:
Abstract: Several factors can affect the development of the broiler, among them we can highlight nutrition and management. In the context nutritional, mineral supplementation is a necessary practice because, in general, the diets did not contain these elements in sufficient quantity to meet the needs of poultry. Zinc is a trace mineral essential to life, participating in several important functions in the body. Generally zinc is added to diets of birds in inorganic forms (oxides, carbonates or sufatos), however in its organic form or chelated presents more bioavailable. The objective of this study was to evaluate the effect of levels of organic zinc (ZnO) in the diet of broilers from 1 to 42 days, housed in new or reused litter. The experiment was conducted in the poultry sector of the Special Unit for Agricultural Sciences EAJ / UFRN. 576 chicks were used 1 day of commercial strain Cobb, distributed in a completely randomized in a 4x2 factorial arrangement with four levels of ZnO 0, 40, 80 and 120 ppm and two environments, new bed (COn) and reused litter (CRE) resulting in eight treatments with six replications of 12 birds. In the pre-initial responses were linearly increasing levels of ZnO on feed intake and quadratic effect on body weight and weight gain. The levels of 72.41 and 70.05 ppm of ZnO in the diet of chicks improved body weight and weight gain, respectively. There was interaction between ZnO and the type of bedding used. The ZnO did not affect broiler performance in the growing phase. There was an interaction between levels of ZnO and type of bed used. The levels of 61.50 and 85.30 ppm organic zinc improves immunity and increases the deposition of zinc in tibia of broilers at 42 days, respectively. ZnO also increases the resistance of the skin of broilers at 42 days of age. Using Cre improves performance of broilers from 1 to 42 days old