3 resultados para Co-variables
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
For a long time, we believed in the pattern that tropical and south hemisphere species have high survival. Nowadays results began to contradict this pattern, indicating the need for further studies. Despite the advanced state of the study of bird population parameters, little is known about their variation throughout the year and the factors affecting them. Reproduction, for example, is one factor that may alter adult survival rates, because during this process the breeding pair allocates resources to maintain itself to maintain offspring, making itself more susceptible to diseases and predation. The aim of this study was to estimate survival and population size of a Central and South America passerine, Tachyphonus rufus (Boddaert, 1783), testing hypotheses about the factors that define these parameters. We performed data collection between Nov/2010 and ago/2012 in 12 ha plot, in a fragment of Atlantic Forest in northeastern Brazil. We used capture-mark-recapture methods to generate estimates using Closed Design Robust model in the program MARK. We generated Multi-state models to test some assumptions inherent to Closed Robust Design. The influence of co-variables (time, rain and reproductive cycle) and the effect of transient individuals were measured. Capture, recapture and apparent survival parameters were defined by reproductive cycle, while temporary dispersal was influence by rain. The estimates showed a higher apparent survival during the non-breeding period (92% ± 1%) than during breeding (40% ± 9%), revealing a cost of reproduction and suggesting a trade-off between surviving and reproducing. The low annual survival observed (34%) did not corroborate the pattern of high rates expected for a tropical bird. The largest population size was estimated to be 56 individuals in Nov/11, explained by high recruitment of juveniles, while the lowest observed in May/12: 10 individuals, probably as a result of massive influx of competitor species. Results from this study add to the growing literature on life history of Neotropical species. We encourage studies like this especially in Brazil, where there are few information, and suggest that covariates related to habitat quality and environmental changes should be tested, so that we can generate increasingly reliable models
Resumo:
Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.
Resumo:
Composites based on alumina (Al2O3), tungsten carbide (WC) and cobalt (Co) exhibit specific properties such as low density, high oxidation resistance, high melting point and high chemical inertia. That composite shows to be a promising material for application in various fields of engineering. In this work, the mechanical properties of the composite (Al2O3 – WC – Co), particularly density and hardness, were evaluated according to the effects of the variables of powder processing parameters, green compact and sintered. Powder composites with the composition of 80 wt% Al2O3, 18 wt% WC and 2 wt% Co were processed by high energy ball milling in a planetary mill for 50 hours as well as mixed by manual mixing in a glass vessel with the same proportion. Samples were collected (2, 10, 20, 30, 40 and 50 hours) during the milling process. Then, the powders were compacted in a cylindrical die with 5 mm in diameter in a uniaxial press with pressures of 200 and 400 MPa. The sintering was in two stages: first, the solid phase sintering was performed at 1126 and 1300 °C for 1 hour with a heating rate of 10 °C/min in a resistive furnace under argon atmosphere for green samples compacted in 200 and 400 MPa; the second sintering was performed on dilatometer in solid phase at 1300 °C for green sample compacted in 200 MPa, another sintering also was performed on dilatometer, this time in liquid phase at 1550 °C for green samples compacted in 200 and 400 MPa, with the same parameters used in resistive furnace. The raw materials were characterized by X – ray diffraction (XRD), X – ray fluorescence (XRF), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and laser particlemeter. The sintered samples were subjected to microhardness testing. The results showed that high energy milling achieved to the objectives regarding the particle size and the dispersion of composite phases. However, the hardness did not achieve to significant results, this is an indication that the composite has low fracture toughness.