2 resultados para Cluster-tree networks
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this thesis we deal with a class of composed networks that are formed by two tree networks, TP and TA, whose end points touches each other through a bipartite network BPA. We explore this network using a functional approach. We are interested in what extend the topology, or the structure, of TX (X = A or P) determines the links of BPA. This composed structure is an useful model in evolutionary biology, where TP and TA are the phylogenetic trees of plants and animals that interact in an ecological community. We use in this thesis two cases of mutualist interactions: frugivory and pollinator networks. We analyse how the phylogeny of TX determines or is correlated with BPA using a Monte Carlo approach. We use the phylogenetic distance among elements that interact with a given species to construct an index κ that quantifies the influence of TX over BPA. The algorithm is based in the assumption that interaction matrices that follows a phylogeny of TX have a total phylogenetic distance smaller than the average distance of an ensemble of Monte Carlo realizations generated by an adequate shuffling data. We find that the phylogeny of animals species has an effect on the ecological matrix that is more marked than plant phylogeny
Resumo:
Ensuring the dependability requirements is essential for the industrial applications since faults may cause failures whose consequences result in economic losses, environmental damage or hurting people. Therefore, faced from the relevance of topic, this thesis proposes a methodology for the dependability evaluation of industrial wireless networks (WirelessHART, ISA100.11a, WIA-PA) on early design phase. However, the proposal can be easily adapted to maintenance and expansion stages of network. The proposal uses graph theory and fault tree formalism to create automatically an analytical model from a given wireless industrial network topology, where the dependability can be evaluated. The evaluation metrics supported are the reliability, availability, MTTF (mean time to failure), importance measures of devices, redundancy aspects and common cause failures. It must be emphasized that the proposal is independent of any tool to evaluate quantitatively the target metrics. However, due to validation issues it was used a tool widely accepted on academy for this purpose (SHARPE). In addition, an algorithm to generate the minimal cut sets, originally applied on graph theory, was adapted to fault tree formalism to guarantee the scalability of methodology in wireless industrial network environments (< 100 devices). Finally, the proposed methodology was validate from typical scenarios found in industrial environments, as star, line, cluster and mesh topologies. It was also evaluated scenarios with common cause failures and best practices to guide the design of an industrial wireless network. For guarantee scalability requirements, it was analyzed the performance of methodology in different scenarios where the results shown the applicability of proposal for networks typically found in industrial environments