6 resultados para Cloud storage services
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work presents an application of a hybrid Fuzzy-ELECTRE-TOPSIS multicriteria approach for a Cloud Computing Service selection problem. The research was exploratory, using a case of study based on the actual requirements of professionals in the field of Cloud Computing. The results were obtained by conducting an experiment aligned with a Case of Study using the distinct profile of three decision makers, for that, we used the Fuzzy-TOPSIS and Fuzzy-ELECTRE-TOPSIS methods to obtain the results and compare them. The solution includes the Fuzzy sets theory, in a way it could support inaccurate or subjective information, thus facilitating the interpretation of the decision maker judgment in the decision-making process. The results show that both methods were able to rank the alternatives from the problem as expected, but the Fuzzy-ELECTRE-TOPSIS method was able to attenuate the compensatory character existing in the Fuzzy-TOPSIS method, resulting in a different alternative ranking. The attenuation of the compensatory character stood out in a positive way at ranking the alternatives, because it prioritized more balanced alternatives than the Fuzzy-TOPSIS method, a factor that has been proven as important at the validation of the Case of Study, since for the composition of a mix of services, balanced alternatives form a more consistent mix when working with restrictions.
Resumo:
Cloud computing can be defined as a distributed computational model by through resources (hardware, storage, development platforms and communication) are shared, as paid services accessible with minimal management effort and interaction. A great benefit of this model is to enable the use of various providers (e.g a multi-cloud architecture) to compose a set of services in order to obtain an optimal configuration for performance and cost. However, the multi-cloud use is precluded by the problem of cloud lock-in. The cloud lock-in is the dependency between an application and a cloud platform. It is commonly addressed by three strategies: (i) use of intermediate layer that stands to consumers of cloud services and the provider, (ii) use of standardized interfaces to access the cloud, or (iii) use of models with open specifications. This paper outlines an approach to evaluate these strategies. This approach was performed and it was found that despite the advances made by these strategies, none of them actually solves the problem of lock-in cloud. In this sense, this work proposes the use of Semantic Web to avoid cloud lock-in, where RDF models are used to specify the features of a cloud, which are managed by SPARQL queries. In this direction, this work: (i) presents an evaluation model that quantifies the problem of cloud lock-in, (ii) evaluates the cloud lock-in from three multi-cloud solutions and three cloud platforms, (iii) proposes using RDF and SPARQL on management of cloud resources, (iv) presents the cloud Query Manager (CQM), an SPARQL server that implements the proposal, and (v) comparing three multi-cloud solutions in relation to CQM on the response time and the effectiveness in the resolution of cloud lock-in.
Resumo:
The progresses of the Internet and telecommunications have been changing the concepts of Information Technology IT, especially with regard to outsourcing services, where organizations seek cost-cutting and a better focus on the business. Along with the development of that outsourcing, a new model named Cloud Computing (CC) evolved. It proposes to migrate to the Internet both data processing and information storing. Among the key points of Cloud Computing are included cost-cutting, benefits, risks and the IT paradigms changes. Nonetheless, the adoption of that model brings forth some difficulties to decision-making, by IT managers, mainly with regard to which solutions may go to the cloud, and which service providers are more appropriate to the Organization s reality. The research has as its overall aim to apply the AHP Method (Analytic Hierarchic Process) to decision-making in Cloud Computing. There to, the utilized methodology was the exploratory kind and a study of case applied to a nationwide organization (Federation of Industries of RN). The data collection was performed through two structured questionnaires answered electronically by IT technicians, and the company s Board of Directors. The analysis of the data was carried out in a qualitative and comparative way, and we utilized the software to AHP method called Web-Hipre. The results we obtained found the importance of applying the AHP method in decision-making towards the adoption of Cloud Computing, mainly because on the occasion the research was carried out the studied company already showed interest and necessity in adopting CC, considering the internal problems with infrastructure and availability of information that the company faces nowadays. The organization sought to adopt CC, however, it had doubt regarding the cloud model and which service provider would better meet their real necessities. The application of the AHP, then, worked as a guiding tool to the choice of the best alternative, which points out the Hybrid Cloud as the ideal choice to start off in Cloud Computing. Considering the following aspects: the layer of Infrastructure as a Service IaaS (Processing and Storage) must stay partly on the Public Cloud and partly in the Private Cloud; the layer of Platform as a Service PaaS (Software Developing and Testing) had preference for the Private Cloud, and the layer of Software as a Service - SaaS (Emails/Applications) divided into emails to the Public Cloud and applications to the Private Cloud. The research also identified the important factors to hiring a Cloud Computing provider
Resumo:
With the advance of the Cloud Computing paradigm, a single service offered by a cloud platform may not be enough to meet all the application requirements. To fulfill such requirements, it may be necessary, instead of a single service, a composition of services that aggregates services provided by different cloud platforms. In order to generate aggregated value for the user, this composition of services provided by several Cloud Computing platforms requires a solution in terms of platforms integration, which encompasses the manipulation of a wide number of noninteroperable APIs and protocols from different platform vendors. In this scenario, this work presents Cloud Integrator, a middleware platform for composing services provided by different Cloud Computing platforms. Besides providing an environment that facilitates the development and execution of applications that use such services, Cloud Integrator works as a mediator by providing mechanisms for building applications through composition and selection of semantic Web services that take into account metadata about the services, such as QoS (Quality of Service), prices, etc. Moreover, the proposed middleware platform provides an adaptation mechanism that can be triggered in case of failure or quality degradation of one or more services used by the running application in order to ensure its quality and availability. In this work, through a case study that consists of an application that use services provided by different cloud platforms, Cloud Integrator is evaluated in terms of the efficiency of the performed service composition, selection and adaptation processes, as well as the potential of using this middleware in heterogeneous computational clouds scenarios
Resumo:
Cloud Computing is a paradigm that enables the access, in a simple and pervasive way, through the network, to shared and configurable computing resources. Such resources can be offered on demand to users in a pay-per-use model. With the advance of this paradigm, a single service offered by a cloud platform might not be enough to meet all the requirements of clients. Ergo, it is needed to compose services provided by different cloud platforms. However, current cloud platforms are not implemented using common standards, each one has its own APIs and development tools, which is a barrier for composing different services. In this context, the Cloud Integrator, a service-oriented middleware platform, provides an environment to facilitate the development and execution of multi-cloud applications. The applications are compositions of services, from different cloud platforms and, represented by abstract workflows. However, Cloud Integrator has some limitations, such as: (i) applications are locally executed; (ii) users cannot specify the application in terms of its inputs and outputs, and; (iii) experienced users cannot directly determine the concrete Web services that will perform the workflow. In order to deal with such limitations, this work proposes Cloud Stratus, a middleware platform that extends Cloud Integrator and offers different ways to specify an application: as an abstract workflow or a complete/partial execution flow. The platform enables the application deployment in cloud virtual machines, so that several users can access it through the Internet. It also supports the access and management of virtual machines in different cloud platforms and provides services monitoring mechanisms and assessment of QoS parameters. Cloud Stratus was validated through a case study that consists of an application that uses different services provided by different cloud platforms. Cloud Stratus was also evaluated through computing experiments that analyze the performance of its processes.
Resumo:
Multi-Cloud Applications are composed of services offered by multiple cloud platforms where the user/developer has full knowledge of the use of such platforms. The use of multiple cloud platforms avoids the following problems: (i) vendor lock-in, which is dependency on the application of a certain cloud platform, which is prejudicial in the case of degradation or failure of platform services, or even price increasing on service usage; (ii) degradation or failure of the application due to fluctuations in quality of service (QoS) provided by some cloud platform, or even due to a failure of any service. In multi-cloud scenario is possible to change a service in failure or with QoS problems for an equivalent of another cloud platform. So that an application can adopt the perspective multi-cloud is necessary to create mechanisms that are able to select which cloud services/platforms should be used in accordance with the requirements determined by the programmer/user. In this context, the major challenges in terms of development of such applications include questions such as: (i) the choice of which underlying services and cloud computing platforms should be used based on the defined user requirements in terms of functionality and quality (ii) the need to continually monitor the dynamic information (such as response time, availability, price, availability), related to cloud services, in addition to the wide variety of services, and (iii) the need to adapt the application if QoS violations affect user defined requirements. This PhD thesis proposes an approach for dynamic adaptation of multi-cloud applications to be applied when a service is unavailable or when the requirements set by the user/developer point out that other available multi-cloud configuration meets more efficiently. Thus, this work proposes a strategy composed of two phases. The first phase consists of the application modeling, exploring the similarities representation capacity and variability proposals in the context of the paradigm of Software Product Lines (SPL). In this phase it is used an extended feature model to specify the cloud service configuration to be used by the application (similarities) and the different possible providers for each service (variability). Furthermore, the non-functional requirements associated with cloud services are specified by properties in this model by describing dynamic information about these services. The second phase consists of an autonomic process based on MAPE-K control loop, which is responsible for selecting, optimally, a multicloud configuration that meets the established requirements, and perform the adaptation. The adaptation strategy proposed is independent of the used programming technique for performing the adaptation. In this work we implement the adaptation strategy using various programming techniques such as aspect-oriented programming, context-oriented programming and components and services oriented programming. Based on the proposed steps, we tried to assess the following: (i) the process of modeling and the specification of non-functional requirements can ensure effective monitoring of user satisfaction; (ii) if the optimal selection process presents significant gains compared to sequential approach; and (iii) which techniques have the best trade-off when compared efforts to development/modularity and performance.