4 resultados para Cloridrato de ciprofloxacino
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Berberine is an alkaloid used as a fluorochrome in the identification of heparin and DNA. Enerback, 1974, described the technique used until today to study granules rich in heparin of vertebrate mast cells. Santos et al., 2003, studied mast cells of the mollusk Anomalocardia brasiliana using biochemical and histological analysis. This work used the fluorescent dye berberine technique to improve characterization of these cells. Mollusk organs (ctenidium and mantle) were processed with routine histological techniques. Tissue sections were treated with berberine 0,02% in redistilled water acidified to pH 4, by the addition of citric acid for 20 minutes. The visualization was made through fluorescence microscopy with ultraviolet region emission. The mast cell fluorescence had a strong yellow color, where cell nuclei appeared more greenish. This result was very similar to the ones reported before. Mast cells are location at the epithelium surface is the same in both organs, mantle and ctenidium. The fluorescence was easily observed in the granules. Therefore, this technique showed to be good and sensitive to study mast cell of invertebrates
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.
Resumo:
Berberine is an alkaloid used as a fluorochrome in the identification of heparin and DNA. Enerback, 1974, described the technique used until today to study granules rich in heparin of vertebrate mast cells. Santos et al., 2003, studied mast cells of the mollusk Anomalocardia brasiliana using biochemical and histological analysis. This work used the fluorescent dye berberine technique to improve characterization of these cells. Mollusk organs (ctenidium and mantle) were processed with routine histological techniques. Tissue sections were treated with berberine 0,02% in redistilled water acidified to pH 4, by the addition of citric acid for 20 minutes. The visualization was made through fluorescence microscopy with ultraviolet region emission. The mast cell fluorescence had a strong yellow color, where cell nuclei appeared more greenish. This result was very similar to the ones reported before. Mast cells are location at the epithelium surface is the same in both organs, mantle and ctenidium. The fluorescence was easily observed in the granules. Therefore, this technique showed to be good and sensitive to study mast cell of invertebrates