27 resultados para Clay. Gravel drilling. Solidification and stabilization
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
One of the waste generated during the drilling of oil wells are gravel which are impregnated of drilling fluid. This residue consists of highly toxic chemicals, including toxic metals. This study suggests an alternative process to the treatment of this waste, by incorporating it the form of raw material in the ceramic matrix , and by solidification and stabilize the metals present, Aluminum (Al), Iron (Fe), Manganese (Mn) and Zinc (Zn). The raw materials were characterized by the techniques of X ray fluorescence (FRX), X ray diffraction (DRX), laser granulometry (GL), thermogravimetry (TG) and differential thermal analysis (ADT). To evaluate the percentage of gravel effect the environmental and technological properties were obtained from formulations containing 0, 10 and 20 % by weight of gravel in the ceramic matrix. After sintering at temperatures 1080, 1120 and 1160 °C, the samples were tested for water absorption, the linear shrinkage firing, voltage of rupture and solubility. The results obtained showed that the stabilization by solidification, is a viable alternative to safe disposal of waste drilling. Ceramics products can be used in the manufacture of solid bricks
Resumo:
One of waste produced on large scale during the well drilling is the gravel drilling. There are techniques for the treatment of the same, but there isn t consensus on what are the best in terms of economic and environmental. One alternative for disposal of this waste and objective of this paper is the incorporation and immobilization of gravel clay matrix to assess their technological properties. The Raw Materials used were characterized by the following techniques: Chemical Analysis by X-ray fluorescence (XRF), mineralogical analysis by X-ray Diffraction (XRD), Grain Size Analysis (FA) and Thermal Analysis by Thermogravimetry (TG) and thermodiferential (DTA). After characterizing, samples were formulated in the following percentages: 0, 5, 10, 15, 25, 50, 75, 100% (weight) of gravel drilling, then the pieces were pressed, dried (110 ° C) and sintered at temperatures of 850, 950 and 1050 ° C. After sintering, samples were tested for water absorption, linear shrinkage, flexural strength, porosity, density, XRD and test color. The results concluded that the incorporation of gravel drilling is a viable possibility for solid masonry bricks and ceramic blocks manufacture at concentrations and firing temperature described here. Residue incorporation reduces an environmental problem, the cost of raw materials for manufacture of ceramic products
Resumo:
One of waste produced on large scale during the well drilling is the gravel drilling. There are techniques for the treatment of the same, but there isn t consensus on what are the best in terms of economic and environmental. One alternative for disposal of this waste and objective of this paper is the incorporation and immobilization of gravel clay matrix to assess their technological properties. The Raw Materials used were characterized by the following techniques: Chemical Analysis by X-ray fluorescence (XRF), mineralogical analysis by X-ray Diffraction (XRD), Grain Size Analysis (FA) and Thermal Analysis by Thermogravimetry (TG) and thermodiferential (DTA). After characterizing, samples were formulated in the following percentages: 0, 5, 10, 15, 25, 50, 75, 100% (weight) of gravel drilling, then the pieces were pressed, dried (110 ° C) and sintered at temperatures of 850, 950 and 1050 ° C. After sintering, samples were tested for water absorption, linear shrinkage, flexural strength, porosity, density, XRD and test color. The results concluded that the incorporation of gravel drilling is a viable possibility for solid masonry bricks and ceramic blocks manufacture at concentrations and firing temperature described here. Residue incorporation reduces an environmental problem, the cost of raw materials for manufacture of ceramic products
Resumo:
This research evaluated the microalgae removal produced in a stabilization pond system using biofilters as post-treatment, besides characterizing the effluents of stabilization ponds and filters in relation to concentrations of algal biomass (chlorophyll a and suspended solids), organic matter (BOD and COD), total phosphorus, orthophosphate, pH and dissolved oxygen, and tried to correlate physicochemical parameters with chlorophyll "a". It was held at the Ponta Negra ETE which is constituted by three stabilization ponds, with a primary facultative pond and two of maturation. For the algae removal were used two submerged bio-filters: the filter FPF (Facultative Pond Filter), fed with facultative pond effluent; and the filter MPF (Maturation Pond Filter), fed with second maturation pond effluent. The filling material of both filters was predominantly gravel no. 2, although it contains portions of gravel no. 1 and no. 3. The filters operating conditions were bad, they were nearly 10 years without maintenance, without cleaning or removal of sludge since the time of its construction, and part of the filling material may be obstruct. Despite poor operating conditions were obtained satisfactory results, in level of posttreatment. Removal efficiencies in relation to BOD and COD were 7 and 25% in FPF and 9 and 19% and in MPF, respectively. In relation to TSS efficiencies in MPF and FPF were 37 and 20%, respectively. As for the chlorophyll "a" removal, the FPF efficiency was 44% and the MPF was 40%. There was 50% of consumption of dissolved oxygen, on average, within the filters. Two profiles were performed in the filters, and it was possible to conclude that variations throughout the day were not statistically significant, and that, regardless of the time of collection, they would have the same representation comparing to the time of data collection (7 am) and the daily average, although individual variations throughout the day have been shown to be significant. Another important observation is that the correlations between Chlorophyll a and TSS were bigger and more significant in the effluent of the filters than in the effluent of the ponds
Resumo:
The oil industry is one of the activities that generates more waste to the environment. The drill cuttings is a waste generated in large quantities in the drilling process and that may cause environmental damage such as soil contamination and consequently the contamination of groundwater if disposed of without prior treatment. Arises the need to develop scientific activities and research ways to adapt these wastes the current environmental standards. In the case of solid wastes, the NBR 10004: 2004 of the Brazilian Association of Technical Standards (ABNT) classifies them into class I waste (hazardous) and class II (not dangerous), which determines which wastes may or may not be discarded in the environment without causing environmental impact. This study presents a novel alternative for treating drill cuttings, where this waste was classified as class I (Abreu & Souza, 2005), mainly by removing the n-paraffin present in it, since this arises when using drilling fluids base oil. Using microemulsion systems promotes the removal of this contaminant drill cuttings samples from wells located in Alto do Rodrigues - RN. Initially, we determined the concentration of paraffin using infrared method in samples were extracted with ultrasound, we obtained a paraffin concentration in the range from 36.59 to 43.52 g of paraffin per kilogram of cuttings. Used two microemulsion systems containing two nonionic surfactants from different classes, one is an alcohol ethoxylated (UNTL-90) and the other an nonylphenol ethoxylated (RNX 110). The results indicated that the system UNTL-90 surfactant has better efficiency than the system with RNX 110. The study of the influence of contact time at the extraction showed that for times greater than 25 minutes has a tendency to increase the percentage extraction with increasing contact time. It was also observed that the extraction is fast because at 1 minute contact has 22.7% extraction. The reuse of the microemulsion system without removing the paraffin extracted in previous steps, showed reduction of 29.32 in percentage of extraction by comparing the first and third extraction, but by comparing the first and second extractions reduction is 8.5 in percentage extraction, so the systems reuse optimization can be an option for economically viable removing paraffin from cuttings. The extraction with shaking is more effective in the treatment of cuttings, reaching the extraction percentage of 87.04%, that is, obtaining a drill cuttings with 0.551% paraffin. Using the percentage of paraffin employed in non-aqueous drilling fluids and fluid maximum limit on cuttings for disposal established by the Environmental Protection Agency of the United States (US EPA), one arrives at the conclusion that the level of paraffin on gravel cannot exceed 3.93%. Conclude that the amount of paraffin in the treated cuttings with the microemulsion system with shaking is below the established by US EPA, showing that the system used was efficient in removing the paraffin from the drill cuttings.
Resumo:
This study was developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin; this tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grainsize, texture, mineral composition, carbonate content, and organic matter. Cruise 1 (C1) was carried prior to drilling, while Cruise 2(C2) and 3 (C3) respectivelly 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm, and 0-10 cm layers. The results show that sedimentary cover around the well is poor to very poorly sorted, with the particle size predominantly in the medium to coarse sand fraction, followed by gravel and mud. The content of calcium carbonate is greater than 96%, associated to bioclastic sediments, and the content of organic matter is less than 12%. Only minor sedimentological variations occured in the area affected by drilling operations. Mainly observed during the second cruise, in terms of a change in grain size distribution associated to an increase in siliciclastic content, This impact occurred in the most surficial sediment (0-2 cm), in the radial closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, one year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity, and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.
Resumo:
This study was developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin; this tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grainsize, texture, mineral composition, carbonate content, and organic matter. Cruise 1 (C1) was carried prior to drilling, while Cruise 2(C2) and 3 (C3) respectivelly 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm, and 0-10 cm layers. The results show that sedimentary cover around the well is poor to very poorly sorted, with the particle size predominantly in the medium to coarse sand fraction, followed by gravel and mud. The content of calcium carbonate is greater than 96%, associated to bioclastic sediments, and the content of organic matter is less than 12%. Only minor sedimentological variations occured in the area affected by drilling operations. Mainly observed during the second cruise, in terms of a change in grain size distribution associated to an increase in siliciclastic content, This impact occurred in the most surficial sediment (0-2 cm), in the radial closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, one year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity, and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.
Resumo:
Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.
Resumo:
The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing
Resumo:
Nacomposites of polymers and lamellar clayminerals, has generated high scientific and technological interest, for having mechanical properties and gas barriers differentiated of polymers and conventional composites. In this work, it was developed nanocomposites by single screw extruder and injection, utilizing commercial raw material, with the goal to investigate the quality of new developed materials. It was evaluated the influence of the content and the kind of clay in the structure and in the nanocomposites properties. It was used regular and elastomeric poly (methyl methacrylate) (Acrigel LEP 100 and Acrigel ECP800) and six montmorillonites (Cloisite 10A, 11B, 15A, 20A, 25A e 30B) at the concentration of 1% e 3% in weight. The nanocomposites were characterized by X-ray diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM), colorimetric, optical transparency, flexural and tensile tests, Rockwell hardness and esclerometry. It was founded that is possible to obtain intercalated and exfoliated nanocomposites PMMA/MMT, and the top results was obtained in the materials with 1%in clay weight organophilizated with 2M2HT (Cloisite 15A and 20A) presented intercalate and hybrid morphology (exfoliated and flocullated). The ones that was produced with organophilizated clay with 2MHTL8 (Cloisite 30B) had excellent visual quality, but the majority presented hybrid morphology. In the materials processed with organophilizated clay with MT2ETOH (Cloisite 30B), there were color change and loss of transparency. It occurs improvement in a few mechanical properties, mainly in the materials produced with PMMA elastomeric (Acrigel ECP800), being more significant, the increase in the resistance to stripping in those nanocomposites
Resumo:
This work presents the results of a survey in oil-producing region of the Macau City, northern coast of Rio Grande do Norte. All work was performed under the Project for Monitoring Environmental Change and the Influence of Hydrodynamic forcing on Morphology Beach Grass Fields, Serra Potiguar in Macau, with the support of the Laboratory of Geoprocessing, linked to PRH22 - Training Program in Geology Geophysics and Information Technology Oil and Gas - Department of Geology/CCET/UFRN and the Post-Graduation in Science and Engineering Oil/PPGCEP/UFRN. Within the economic-ecological context, this paper assesses the importance of mangrove ecosystem in the region of Macau and its surroundings as well as in the following investigative exploration of potential areas for projects involving reforestation and / or Environmental Restoration. At first it was confirmed the ecological potential of mangrove forests, with primary functions: (i) protection and stabilization of the shoreline, (ii) nursery of marine life, and (iii) source of organic matter to aquatic ecosystems, (iv) refuge of species, among others. In the second phase, using Landsat imagery and techniques of Digital Image Processing (DIP), I came across about 18,000 acres of land that can be worked on environmental projects, being inserted in the rules signed the Kyoto Protocol to the market carbon. The results also revealed a total area of 14,723.75 hectares of activity of shrimp production and salting that can be harnessed for the social, economic and environmental potential of the region, considering that over 60% of this area, ie, 8,800 acres, may be used in the planting of the genus Avicennia considered by the literature that the species best sequesters atmospheric carbon, reaching a mean value of 59.79 tons / ha of mangrove
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
Octopus insularis, target species in this study, is the dominant benthic octopus of the North and Northeast Brazil. Studies on behavior and ecology of the species have been conducted primarily on oceanic islands, with little information on the continental populations. In this study, two regions of the coast of RN, Rio do Fogo and Pirangi, were chosen for the characterization of the niche by O. insularis populations. The dietary niche, habitat and distribution of O. insularis of oceanic islands and the mainland, were compared. In addition, individual characteristics of feeding behavior in a population at Atol das Rocas was studied, taking into account the size of individuals, the proximity of the dens and characteristics of their "personality". The diet of the Rio do Fogo population was composed mainly of bivalve molluscs (82%), unlike Pirangi population that has a diet consisting mainly of crustaceans Decapoda (68%), similar to that described for the populations of the islands. Consequently, the feeding niches of the island populations were more similar, with greater overlap, but the niche breadth of the continent was larger. The habitats of occurrence on the coast includes reefs, rocks, gravel and an environment called Restinga, a plateau composed of biogenic gravel, sand, sponges and algae, showed a high density of animals. Similarly to that found in the islands, O. insularis in the continent, had a clumped distribution, and a bathymetric segregation between small and large individuals. The differences in diet composition among populations were explained by differences in habitat and coverage of the substrate, which may be directly influencing the diversity and prey availability in these environments. The individual analyzes of the population at Atol das Rocas, showed no relationship between the degree of individual specialization and the different personalities, or the distance between dens. The results suggest that the foraging strategy with greater availability of prey in the environment has an influence on diet octopuses over preferences or personalities
Resumo:
There is nowadays a growing demand for located cooling and stabilization in optical and electronic devices, haul of portable systems of cooling that they allow a larger independence in several activities. The modules of thermoelectrical cooling are bombs of heat that use efect Peltier, that consists of the production of a temperature gradient when an electric current is applied to a thermoelectrical pair formed by two diferent drivers. That efect is part of a class of thermoelectrical efcts that it is typical of junctions among electric drivers. The modules are manufactured with semiconductors. The used is the bismuth telluride Bi2Te3, arranged in a periodic sequence. In this sense the idea appeared of doing an analysis of a system that obeys the sequence of Fibonacci. The sequence of Fibonacci has connections with the golden proportion, could be found in the reproductive study of the bees, in the behavior of the light and of the atoms, as well as in the growth of plants and in the study of galaxies, among many other applications. An apparatus unidimensional was set up with the objective of investigating the thermal behavior of a module that obeys it a rule of growth of the type Fibonacci. The results demonstrate that the modules that possess periodic arrangement are more eficient
Resumo:
The use of animal models in biomedical research is ever increasing. Models that use primates might also have advantages in terms of low maintenance costs and availability of biological knowledge, thereby favoring their use in different experimental protocols. Many current stress studies use animal models at different developmental stages since biological response differs during ontogeny. The aims of this study were to perform a detailed characterization of the developmental stages of common marmosets (Callithrix jacchus), a very important animal model used in biomedical research. Ten subjects, 6 females and 4 males, were followed from birth to initial adult age (16 months). Behavioral and fecal collection for measurement of adrenal (cortisol) and sex (progesterone, estradiol and androgens) hormones took place twice a week during the first month of life and once a week for the remainder of the study. Behavior was observed for 30 minutes in the morning (0700-09:00h) and afternoon (12:00-14:00h). Behavioral profile showed changes during ontogeny, characterizing the 4 developmental stages and the respective phases proposed by Leão et al (2009).. Differentiation of developmental stages was considered using the onset, end, change and stabilization of the behavioral profile parental care (weaning and carrying), ingestion (solid food), affiliation (social grooming) and autogrooming, agonism (scent marking and piloerection) and play behavior and endocrine profile. Infant weaning and carrying terminated within the infantile stage and the peak of solid food ingestion was recorded in the infantile III phase. Receiving grooming was recorded earlier than grooming performed by the infant and autogrooming. The first episode of scent marking was recorded in the 4th week and it was the least variable behavior, in terms of its onset, which, in almost all animals, was between the 5th and 7th week of life. Solitary play and play with the twin started around the 7th week and play with other members of the group started 8 weeks later. Sex hormone secretion started to differ from basal levels between the 21st and 23rd week of life, in males and females, suggesting that puberty occurs simultaneously in both sexes. Basal cortisol, even at an early age, was higher in females than in males. However, cortisol was not correlated with the juvenile stage, as expected, since this stage corresponds to the transition between infancy and adult age and most behaviors are intensified by this time. The behavioral and endocrine profile of subadult animals did not differ from that of the adults. These results provide more detailed parameters for the developmental process of C. jacchus and open new perspectives for the use of experimental approaches focused on the intermediate ontogenetic phases of this species