3 resultados para Chorume

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work was performing effluent degradation studies by electrochemical treatment. The electrochemical oxidation (EO) hydroquinone (H2Q) was carried out in acid medium, using PbO2 electrode by galvanostatic electrolysis, applying current densities of 10 and 30 mA/cm2 . The concentration of H2Q was monitored by differential pulse voltammetry (DPV). The experimental results showed that the galvanostatic electrolysis process performance significantly depends on the applied current density, achieving removal efficiencies of 100% and 80 % and 10 applying 30 mA/cm2 , respectively. Furthermore, the electroanalytical technique was effective in H2Q be used as a detection method. In order to test the efficiency of PbO2 electrode, the electrochemical treatment was conducted in an actual effluent, leachate from a landfill. The liquid waste leachate (600ml effluent) was treated in a batch electrochemical cell, with or without addition of NaCl by applying 7 mA/cm2 . The efficiency of EO was assessed against the removal of thermo-tolerant coliforms, total organic carbon (TOC), total phosphorus and metals (copper, cobalt, chromium, iron and nickel). These results showed that efficient removal of coliforms was obtained (100%), and was further decrease the concentration of heavy metals by the cathode processes. However, results were not satisfactory TOC, achieving low total removal of dissolved organic load. Because it is considered an effluent complex were developed other tests with this effluent to monitor a larger number of decontamination parameters (Turbidity, Total Solids, Color, Conductivity, Total Organic Carbon (TOC) and metals (barium, chromium, lithium, manganese and Zinc), comparing the efficiency of this type of electrochemical treatment (EO or electrocoagulation) using a flow cell. In this assay was compared to electro streaming. In the case of the OE, Ti/IrO2-TaO5 was used as the anode, however, the electrocoagulation process, aluminum electrodes were used; applying current densities of 10, 20 and 30 mA/cm2 in the presence and absence of NaCl as an electrolyte. The results showed that EO using Ti/IrO2–TaO5 was anode as efficient when Cl- was present in the effluent. In contrast, the electrocoagulation flow reduces the dissolved organic matter in the effluent, under certain experimental conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leachates are effluent produced by decomposition of solid waste, they have complex composition and can be highly toxic. Therefore such percolated liquid should be collected and treated properly to avoid environmental contamination of soil and of water bodies. The objective of this study was to evaluate the toxicity through ecotoxicological tests with Ceriodaphnia dubia (Cladocera - Crustacea) of percolated liquids generated in two different systems of municipal solid waste (MSW) disposal in the city of Natal/ RN: A Sanitary Landfill in the Metropolitan Region of Natal/ RN, and in a dump off area. Furthermore, it was evaluated the possible contamination of the underground water of the dump off area. Two monthly samples were taken at four points between the months of May/2009 and January/2010. The Point "A" corresponds to the end of the pond leachate treatment in ASRMN; The Point "B" corresponds to a containment pond at the dump. The Point "C" is an area near one of the cells of the dump off area where the leachate outcrops; The Point "D" stands for an underground water well at the area. The last point, called "E" was sampled only once and corresponds to the slurry produced by temporary accumulation of solid waste in the open area of the dump. The ecotoxicological tests, acute and chronic, followed the ABNT 13373/2005 rules, with some modifications. The samples were characterized by measuring the pH number, the dissolved oxygen (DO), the salinity, BOD5, COD, Cd, Cu, Pb, Cr, Fe, Mg, Ni, and Zn. At Point A, the average number of EC50-48h ranged between 1.0% and 2.77% (v/v), showing a high toxicity of the leachate to C.dubia in all months. To this point, positive correlations were found between the EC50- 48 with precipitation. Negative correlations were found between the EC50- 48h with salinity. At point B there was no response of the acute exposure of organisms to the test samples. At point C the EC50-48h ranged from 17.68% to 35.36% in just two months of the five ones analyzed, not correlated meaning. Point D, the EC50-48h level ranged between 12.31% and 71.27%, showed a negative correlation with, only, precipitation. Although it was observed toxicity of underground water in the Landfill Area, there was no evidence of water contamination by leachate, however, due to the toxic character of this water, additional tests should be conducted to confirm the quality of water that is used for human supply. At point E there was no acute toxicity. These results support the dangers of inappropriate disposal of MSW to water bodies due to the high toxicity of the leachate produced highlighting the necessity of places of safe confinement and a treatment system more effective to it

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leachates are effluent produced by decomposition of solid waste, they have complex composition and can be highly toxic. Therefore such percolated liquid should be collected and treated properly to avoid environmental contamination of soil and of water bodies. The objective of this study was to evaluate the toxicity through ecotoxicological tests with Ceriodaphnia dubia (Cladocera - Crustacea) of percolated liquids generated in two different systems of municipal solid waste (MSW) disposal in the city of Natal/ RN: A Sanitary Landfill in the Metropolitan Region of Natal/ RN, and in a dump off area. Furthermore, it was evaluated the possible contamination of the underground water of the dump off area. Two monthly samples were taken at four points between the months of May/2009 and January/2010. The Point "A" corresponds to the end of the pond leachate treatment in ASRMN; The Point "B" corresponds to a containment pond at the dump. The Point "C" is an area near one of the cells of the dump off area where the leachate outcrops; The Point "D" stands for an underground water well at the area. The last point, called "E" was sampled only once and corresponds to the slurry produced by temporary accumulation of solid waste in the open area of the dump. The ecotoxicological tests, acute and chronic, followed the ABNT 13373/2005 rules, with some modifications. The samples were characterized by measuring the pH number, the dissolved oxygen (DO), the salinity, BOD5, COD, Cd, Cu, Pb, Cr, Fe, Mg, Ni, and Zn. At Point A, the average number of EC50-48h ranged between 1.0% and 2.77% (v/v), showing a high toxicity of the leachate to C.dubia in all months. To this point, positive correlations were found between the EC50- 48 with precipitation. Negative correlations were found between the EC50- 48h with salinity. At point B there was no response of the acute exposure of organisms to the test samples. At point C the EC50-48h ranged from 17.68% to 35.36% in just two months of the five ones analyzed, not correlated meaning. Point D, the EC50-48h level ranged between 12.31% and 71.27%, showed a negative correlation with, only, precipitation. Although it was observed toxicity of underground water in the Landfill Area, there was no evidence of water contamination by leachate, however, due to the toxic character of this water, additional tests should be conducted to confirm the quality of water that is used for human supply. At point E there was no acute toxicity. These results support the dangers of inappropriate disposal of MSW to water bodies due to the high toxicity of the leachate produced highlighting the necessity of places of safe confinement and a treatment system more effective to it