107 resultados para Cerâmicas unguladas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009
Resumo:
There are ores of clay in Piauí State that are used for red structural ceramics, which are naturally contaminated with calcareous vein. This is one thing that impedes its exploration in an adequate way, especially for tile production. The present work aims at verifying the influence of the calcareous contents in the technological structural ceramics area, seeking to determine a maximum permissible calcareous proportion/contents in the ceramic mass using the patterns of the local industry production. For the consecution of this paper, it was characterized the clay and calcareous material by FRX, DRX, TGA and DTA. It was also configurated by extrusion and burnt in the temperatures of 850°C, 900°C, 950°C and 1000°C pieces of the corpus with 0, 5, 10, 15 e 20% of calcareous proportion. After that, it was carried out technological samples of linear retraction, water absortion, apparent porosity, specific apparent mass and mechanic resistance. The results showed the possibility of using calcareous in the ceramic mass and in some cases the technological properties got better
Resumo:
The red ceramic industry is recognized as of major importance in Piauí State. The State capital, Teresina, is the greatest producer of this material ( production about 18 million peaces), which is used mainly for masonry sealing blocks. One of the most frequent problems in this kind of products is the efflorescence. This work has the main objective of studying the influence of gypsum addition on non-glazed tiles, by using the local industry production standards. The raw materials were characterized by FRX, DRX, TGA, DTA and AD. Extruded test specimens were made with the addition of 1, 3 and 5% of gypsum in the ceramic paste, burned at 850oC, 950oC and 1050oC and submitted to further technological tests and microestrutural analysis by the scanning electron microscope. In order to accelerate the aging of bodies of evidence, they were immersed in successive water baths and posterior drying. The reference ceramic paste showed tendency to efflorescence formation after drying and consolidated efflorescence after burning, but no affecting the technological results
Resumo:
The continuous advances in ceramic systems for crowns and bridges infrastructure getting researchers and manufacturers looking for a material that has good mechanical properties and aesthetic. The purpose of this study was to verify in which composition and sintering temperature the ceramic system for infrastructure composed of alumina and zirconia would have the best mechanical properties. With this objective we made in UFRN laboratories 45 test bodies in the form of rectangular bars with the following dimensions: 30mm x 8mm x 3mm, where we separated by the sintering temperature: 1200°C, 1300ºC and 1400ºC, and by comp osition: 33% Zirconia + 67% Alumina; 50% Zirconia + 50% Alumina and 25% Zirconia + 75% Alumina, these test bodies were not infiltrated with glass. Also, were made nine test bodies by a technical from a laboratory with a commercial ceramic system: in the Ceram Zircônia (Vita - Zahnfabrik) with the following dimensions: 20mm x 10mm x 0.5mm, these test bodies following all recommendations of the manufacturer and were infiltrated with glass. Were realized optical and electronic microscopy analyses, hardness testing, resistance to bending in three points, porosity and bulk density. After analysis of the results we verified that with the increasing of sintering temperature, increased the value of resistance to bending, but with the same temperature there was no significant difference between the different compositions, samples made with the commercial ceramic that were infiltrated, presented a resistance to bending six times greater than the samples sintered to 1400°C and which have not been infiltra ted. There was no significant difference between the values of apparent porosity for the samples made in UFRN laboratories, but the samples of commercial ceramic obtained 0% in porosity apparent value. In tests of Rockwell Hardness there is an increase in the value of Hardness, with the increase of sintering temperature for the samples not infiltrated. Samples infiltrated showed similar values as the samples sintered in 1400°C. There was no significant difference between the values of apparent density among samples manufactured in UFRN laboratories and samples made with a commercial ceramic
Resumo:
In building, during the implementation process of major or even minor works, there is a considerable waste of plaster in the steps of coating, making it is a negative factor because of the loss of these processes constructive remains incorporated into buildings, as component, whose final dimensions are higher than those projected. Another negative factor is the disposal of waste gypsum in inappropriate places, thus contributing to the degradation of environmental quality, due to the leaching of this waste and may trigger the formation of sulfuric acid. Therefore, based on this picture, processing and reuse of waste coating, combined with the ceramics industry, which is a strong potential in the reuse of certain types of waste, promote mutual benefits. Thus the overall objective of this work is to conduct a search with scientific and technological aspects, to determine the effect of the incorporation of the residue of plaster for coating, from the building, the formulation of bodies for red ceramic. The residue of plaster coating was collected and characterized. They were also selected raw materials of two ceramic poles of the state of Rio Grande do Norte and formulations have been made with the intention of obtaining those with the best physical and mechanical properties, the residue was added the percentage of 5%, 10%, 15%, 20%, 25% and 30%, in the best formulation of ceramic industry 1 and, according the properties analyses, 5%, 10% and 15% as the best results of ceramic industry 2. The samples were sintered at temperatures of 850 ºC, 950 °C and 1050 °C, the heating rate of 5 ºC / min with isotherm of two hours. They were submitted to testing technology, such as lineal shrinkage, water absorption, apparent porosity, apparent density and bending resistence. The residue incorporation best results in the formulations of mass in red ceramic, were observed between the temperatures of 850 ºC and 950 ºC, in those formulations that have illite clays and medium plastic in their composition, in the range of 0% to 15% residue incorporated
Resumo:
In this work, ceramic powders belonging to the system Nd2-xSrxNiO4 (x = 0, 0.4, 0.8, 1.2 and 1.6) were synthesized for their use as catalysts to syngas production partial. It was used a synthesis route, relatively new, which makes use of gelatin as organic precursor. The powders were analyzed at several temperatures in order to obtain the perovskite phase and characterized by several techniques such as thermal analysis, X-rays diffraction, Rietveld refinement method, specific surface area, scanning electron microscopy, energy dispersive spectroscopy of X-rays and temperature programmed reduction. The results obtained using these techniques confirmed the feasibility of the synthesis method employed to obtain nanosized particles. The powders were tested in differential catalytic conditions for dry reforming of methane (DRM) and partial oxidation of methane (POM), then, some systems were chosen for catalytic integrals test for (POM) indicating that the system Nd2-xSrxNiO4 for x = 0, 0.4 and 1.2 calcined at 900 °C exhibit catalytic activity on the investigated experimental conditions in this work without showing signs of deactivation
Resumo:
This research presents an overview of the addition steelwork dust of ceramic shingles in order to contribute to the utilization use of such residue. The ceramic industry perspective in the Brazilian State of Piauí is quite promising. Unlike other productive sectors, the ceramic industry uses basically natural raw materials. Its final products are, in short, the result of transforming clay compounds. These raw materials are composed primarily of aluminum oxide, silicon, iron, sodium, magnesium, end calcium, among others. It was verified that steelwork dust is composed primarily of these same oxides, so that its incorporation in to structural ceramics is a very reasonable idea. Both clay and steelwork powder were characterized by AG, XRF, XRD, TGA and DTA. In addition, steelwork dust samples containing (0%, 5%, 10%, 15%, 20% and 25%) were extruded and burned at 800°C, 850°C, 900°C and 950°C. Then t echnological tests of linear shrinkage, water uptake, apparent porosity, apparent density and flexural strengthwere carried at. The results showed the possibility of using steelwork powder in ceramic shingles until 15% significant improvement in physical and mechanical properties. This behavior shows the possibility of burning at temperatures lower than 850ºC, thus promoting a product final cost reduction
Resumo:
The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C
Resumo:
Rio Grande do Norte State stands out as one great producer of structural clay of the brazilian northeastern. The Valley Assu ceramic tiles production stands out obtained from ilitics ball clays that abound in the region under study. Ceramics formulation and the design of experiments with mixture approach, has been applied for researchers, come as an important aid to decrease the number of experiments necessary to the optimization. In this context, the objective of this work is to evaluate the effects of the formulation, temperature and heating rate in the physical-mechanical properties of the red ceramic body used for roofing tile fabrication of the Valley Assu, using design of mixture experiments. Four clays samples used in two ceramics industry of the region were use as raw material and characterized by X-ray diffraction, chemical composition, differential thermal analysis (DTA), thermogravimetric analysis (TGA), particle size distribution analysis and plasticity techniques. Afterwards, they were defined initial molded bodies and made specimens were then prepared by uniaxial pressing at 25 MPa before firing at 850, 950 and 1050 ºC in a laboratory furnace, with heating rate in the proportions of 5, 10 e 15 ºC/min. The following tecnologicals properties were evaluated: linear firing shrinkage, water absorption and flexural strength. Results show that the temperature 1050 ºC and heating rate of 5 ºC/min was the best condition, therefore presented significance in all physical-mechanical properties. The model was accepted as valid based of the production of three new formulations with fractions mass diferents of the initial molded bodies and heated with temperature at 1050 ºC and heating rate of 5 ºC/min. Considering the formulation, temperature and heating rate as variables of the equations, another model was suggested, where from the aplication of design of experiments with mixtures was possible to get a best formulation, whose experimental error is the minor in relation to the too much formulations
Resumo:
Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume
Resumo:
A great discussion of this work refers to development that is related to the common census of economic growth, in addition, another component of this discussion is related to socio-cultural and environmental impacts of this conception of progress. Giving economic progress is not necessary, since the development in its fullness, that progress depends, but what is sought is a harmony between capital accumulation and environmental limits and social interactions between men and between them and nature. The presence or absence of this harmonious relationship can be observed in various industrial activities, more punctual can cite the example of the developed ceramic activity in the meso-Valley-Acu in Rio Grande do Norte where such activity has great economic representativeness for the region, but that does not have good relations with social and environmental issues and is more focused on the accumulation of capital by increasing its level of industrial activity. Given this debate, the present paper aims to present the profile of a ceramic tile Valley-of-Acu and impacts, ecosocioambientais generated as a result of this activity as well. Methodologically the research will be conducted through literature research papers in books and other work carried out on the same theme, the second time will be held the empirical part of the research through interviews with managers of industries (selected through sample with the criteria set later ) as well as with employees working on the factory floor and city managers in the region under analysis and other agencies responsible for regulation and control of activity potter in the state
Resumo:
This a study on the achievement of alumina membranes by the method of anodizing. From this method got up a layer of aluminum oxide on the anodic metal, who presented the basic properties necessary for the application as a support for the production and acquisition of nanomaterials, such as porosity nano and resistance to high temperature, and other properties, as resistance to corrosion, and chemical, high ranking of the structure and pore size of the pores. The latter, ranging from 10 to 100nm depended on the electrolyte used, which in this study was the H2SO4. To remove all remaining aluminum, it is a bath of dissolution with HCl and CuCl where the residual aluminum has been withdrawn, and the deep pores were opened after chemical treatment with NaOH. After the dissolution, the membranes were calcined at temperatures of 300, 600 and 900° C, and sintered at temperatures of 1200 and 1300º C to win mechanical strength, porosity and observe the desired crystallization. Then went through analyses of composition through X-ray diffraction and morphology of the microstructure through a scanning electron microscope. The method was effective for obtaining alumine membranes applied in the processes of production of materials in nano
Resumo:
The tricalcium phosphate ceramics has been widely investigated in the last years due its bioresorbable behavior. The limiting factor of the application of these materials as temporary implants is its low strength resistance. The tricalcium phosphate presents an allotropic transformation β→α around 1250 ºC that degrades its resistance. Some studies have been developed in order to densify this material at this temperature range. The objective of this work is to study the influence of the addition of magnesium oxide (MgO) in the sintering of β-TCP. The processing route was uniaxial hot pressing and its objective was to obtain dense samples. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements, analyzed of the microstructure. The addition of magnesium oxide doesn t cause an improvement of the mechanical strength in relation to material without additive.
Resumo:
The calcium phosphate ceramics have been very investigated as material for bone implants. The tricalcium phosphate (β-TCP) had a great potential for application in temporary implants like a resorbable bioceramic. This material presents a limitation in its sintering temperature due to occurrence of the allotropic transformation β → α at temperatures around 1200°C, not allowing the attainment of dense ceramic bodies. This transformation also causes cracks, what diminishes the mechanical strength, limiting its use to applications of low mechanical requests. This work studies the influence of the addition of manganese oxide in the sintering of β-TCP. Two processing routes were investigated. The first was the powder metallurgy conventional process. The test bodies (samples) were pressed and sintering at temperatures of 1200 and 1250°C. The second route was uniaxial hot pressing and its objective was to obtain samples with high relative density. The samples were physically characterized through density and porosity measurements. The thermal behavior was studied through dilatometric, thermal differential and thermogravimetric analysis. The mechanical properties were characterized by three point flexure test and Vickers microhardness measurements. The microstructure was analyzed by scanning electron microscopy. The addition of manganese oxide caused an improvement of the mechanical strength in relation to the material without additive and promoting the stabilization of β-TCP to greater temperatures
Resumo:
Porous ceramics have many applications: thermal insulation, catalytic support, materials to fire protection, filters, and others. There are many techniques to production of ceramic filters. One technique to obtain ceramic filters is the replication method. This method consists in the impregnation of polymeric foam with ceramic slurry followed by a heating treatment that will burn out the organic elements and sintering of the material, resulting of a replication of the original foam. To perform their functions ceramic filters must satisfy mechanical requirements and permeability parameters (darcian k1 and no-darcian k2). The permeability and the strength of the ceramic material are dependent of the pore size and pore distribution. To the use at high temperatures the evaluation of mechanical properties in these temperatures is necessary. In this work the mechanical behavior of two commercial porous ceramics (10 and 40 poros per inch) was studied these materials were submitted to compression and four-point flexure test (room temperature, at 1000 °C, after thermal shock). Density and porosity measurements, permeability tests and microstructural analysis by scanning electronic microscopy (SEM) were realized. The Results showed that the decrease of mechanical strength of these materials, when submitted to thermal shock, occur for propagation of new cracks from cracks pre-existing and the permeability depends of the pore size