126 resultados para Cerâmica - Propriedades elétricas
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Este trabalho tem como objetivo estudar a influência da adição de diversos aditivos tais como óxido de silício (SiO2), óxido de bismuto (BiO2), óxido de cério (CeO2) e óxido de lantânio (La2O3) nas propriedades elétricas e dielétricas do titanato de bário (BaTiO3) policristalino. As amostras de titanato de bário foram compactadas e sinterizadas no Laboratório de Tecnologia dos Pós, do Departamento de Física da Universidade Federal do Rio Grande do Norte. Foram realizadas medidas de resistividade elétrica e constante dielétrica em função da temperatura, bem como ensaios de difração de raios-X e análise microestrutural através da microscopia eletrônica de varredura. A análise dos resultados permitiu avaliar a influência dos aditivos nas propriedades elétricas e dielétricas, e propor a utilização de cerâmicas eletrônicas a base de titanato de bário com propriedades superiores as do material existente atualmente
Resumo:
The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents
Resumo:
The study of polymer blends has been an alternative method in the search field of new materials for obtaining materials with improved properties. In this work blends of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) doped with titanium dioxide (TiO2) were studied. The PEO is a polymer semicrystalline structure varying between, 70 and 84% crystallinity, while the PMMA exhibits behavior amorphous in their structure. The use of TiO2 is related to corrosion-resistant of titanium as well as good heat transfer and other characteristics. The study of these polymer blends doped TiO2 gives the properties junction organic (polymer) and inorganic (oxide) which leads to modification of the properties of the resultant material. The blends were doped TiO2 (POE/PMMA/TiO2) in different proportions of the PMMA with the PEO and TiO2 fixed. The ratios were: 90/10/0,1; 85/15/0, 1; 80/20/0,1, 75/25/0,1 and 70/30/0,1. The resulting material was obtained in powder form and being characterized by Fourier Transformed Infrared (FTIR) Spectroscopy, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and Electrochemical Impedance Spectroscopy (EIS). The infrared spectra (IR) for the blends in different ratios showed a band at 1744 cm-1, characteristic of the C=O stretching, which increases in intensity with increasing PMMA composition, while in the spectrum of pure PEO this band is absent. This may suggest that the interaction is occurring between the polymers. In the micrographs of the blends also observed change in their surfaces with variation of the composition of PMMA, contributing to the change of the electrical properties of the material. The EIS data showed that the material exhibited conductivity of the order of 10-6 S.cm-1. The blend in the ratio B2(85/15/0, 1) showed better conductivity, σ = 1.56 x 10-6 S.cm-1. It was observed that the diffusion coefficient for the blends, B5(70/30/0, 1) was the largest, 1.07 x 10-6 m2.s-1. The XRD data showing that, with the variation in the composition of the PMMA blend crystallinity of the material is decreased reaching a minimum B3(80/20/0,1), and then increases again. Thermal analysis suggests that blends made from the material obtained can be applied at room temperature
Resumo:
Materials consisting of perovskite-type oxides (ABO3) have been developed in this work for applications in fuel cell cathodes of solid oxide type (SOFC). These ceramic materials are widely studied for this type of application because they have excellent electrical properties, conductivity and electrocatalytic. The oxides LaMnO3, LaFeO3, LaFe0.2Mn0.8O3 e La0.5Fe0.5MnO3 were synthesized by the method of microwave assisted combustion and after sintering at 800°C in order to obtain the desired phases. The powders were characterized by thermogravimetry (TG), X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and voltammetric analysis (cyclic voltammetry and polarization curves). The results obtained by XRF technique showed that the microwave synthesis method was effective in obtaining doping oxides with values near stoichiometric. In general, powders were obtained with particle size less than 0.5 μm, having a porous structure and uniform particle size distribution. The particles showed spherical form, irregular and crowded of varying sizes, according to the analysis of SEM. The behavior of the oxides opposite the thermal stability was monitored by thermogravimetric curves (TG), which showed low weight loss values for all samples, especially those of manganese had its structure. By means of Xray diffraction of the samples sintered at 800°C was possible to observe the formation of powders having high levels of crystallinity. Furthermore, undesirable phases such as La2O3 and MnOx were not identified in the diffractograms. These phases block the transport of oxygen ions in the electrode/electrolyte interface, affecting the electrochemical activity of the system. The voltammetric analysis of the electrocatalysts LF-800, LM-800, LF2M8-800 e L5F5M-800 revealed that these materials are excellent electrical conductors, because it increased the passage of electrical current of the working electrode significantly. Best performance for the oxygen reduction reaction was observed with iron-rich structures, considering that the materials obtained have characteristics suitable for use in fuel cell cathodes of solid oxide type
Resumo:
The alginates are copolymers of 1→4-linked β-D-mannuronic acid (M) and α-Lguluronic acid (G) residues that are arranjed in a block structure along a linear chain. Titanium dioxide, TiO2, is a ceramic material and can exist in three distinct crystallography forms: anatase, brookite and rutile. composites of organic and inorganic materials have better properties than the components alone. Thus, this study aims to synthesize, characterize and analyze the composite NaAlg-TiO2 in the form of powder and film. The synthesis of composite powders was performed using the sol-gel process and obtain the composite film was performed using the slow evaporation process, then the composites were analyzed by infrared spectroscopy, fluorescence x ray, thermal analysis, attenuated total reflection (ATR), x ray diffraction and impedance spectroscopy. The X ray diffraction patterns of composite powders show that with increasing calcination temperature, there were no complete transition of rutile-anatase crystalline phase, since at all temperatures studied (300, 500, 700, 900 and 1100ºC) were observed peaks of anatase phase. Thermal analysis shows that at 400°C caused the decomposition of sodium alginate in sodium carbonate and above 600°C, we observe an exothermic peak related to the decomposition of sodium carbonate and in the presence of titanium dioxide becomes sodium titanate. The XRD results confirm the formation of sodium carbonate at 700ºC and the formation sodium titanate in the temperature range 900-1100ºC. The sodium titanate influenced the electrical properties of the material, because with increasing temperature there was a decrease in conductivity, probably due to the creation of Ti vacancies, since the sodium can induce the reduction of surface Ti4+ ions into Ti3+ species. The infrared spectra of the composites in the form of powder and film showed a small shift in the bands compared to the spectrum of pure alginate, indicating that these shifts, even small ones, have evidence of miscibility between the polymer and ceramic material
Resumo:
Composite NiO-C0.9Gd0.1O1.95 (NiO-GDC), one of the materials most used for the manufacture of anodes of Cells Solid Oxide Fuel (SOFC) currently, were obtained by a chemical route which consists in mixing the precursor solution of NiO and CGO phases obtained previously by the Pechini method. The nanopowders as-obtained were characterized by thermal analysis techniques (thermogravimetry and Differential Scanning Calorimetry) and calcined materials were evaluated by X-ray diffraction (XRD). Samples sintered between 1400 and 1500 ° C for 4 h were characterized by Archimedes method. The effects of the composition on the microstructure and electrical properties (conductivity and activation energy) of the composites sintered at 1500 ° C were investigated by electron microscopy and impedance spectroscopy (between 300 and 650 ° C in air). The refinement of the XRD data indicated that the powders are ultrafine and the crystallite size of the CGO phase decreases with increasing content of NiO. Similarly, the crystallite of the NiO phase tends to decrease with increasing concentration of CGO, especially above 50 wt % CGO. Analysis by Archimedes shows a variation in relative density due to the NiO content. Densities above 95% were obtained in samples containing from 50 wt % NiO and sintered between 1450 and 1500 °C. The results of microscopy and impedance spectroscopy indicate that from 30-40 wt.% NiO there is an increase in the number of contacts NiO - NiO, activating the electronic conduction mechanism which governs the process of conducting at low temperatures (300 - 500 °C). On the other hand, with increasing the measuring temperature the mobility of oxygen vacancies becomes larger than that of the electronic holes of NiO, as a result, the high temperature conductivity (500-650 ° C) in composites containing up to 30-40 wt.% of NiO is lower than that of CGO. Variations in activation energy confirm change of conduction mechanism with the increase of the NiO content. The composite containing 50 wt. % of each phase shows conductivity of 19 mS/cm at 650 °C (slightly higher than 13 mS/cm found for CGO) and activation energy of 0.49 eV.
Resumo:
Ferroelectric ceramics with perovskite structure (ABO3) are widely used in solid state memories (FeRAM’s and DRAM's) as well as multilayered capacitors, especially as a thin films. When doped with zirconium ions, BaTiO3-based materials form a solid solution known as barium zirconate titanate (BaTi1-xZrxO3). Also called BZT, this material can undergo significant changes in their electrical properties for a small variation of zirconium content in the crystal lattice. The present work is the study of the effects of deposition parameters of BaTi0,75Zr0,25O3 thin films by spin-coating method on their morphology and physical properties, through an experimental design of the Box-Behnken type. The resin used in the process has been synthesized by the polymeric precursor method (Pechini) and subsequently split into three portions each of which has its viscosity adjusted to 10, 20 and 30 mPa∙s by means of a rotary viscometer. The resins were then deposited on Pt/Ti/SiO2/Si substrates by spin-coating method on 15 different combinations of viscosity, spin speed (3000, 5500 and 8000 rpm) and the number of deposited layers (5, 8 and 11 layers) and then calcined at 800 ° C for 1 h. The phase composition of the films was analyzed by X-ray diffraction (XRD) and indexed with the JCPDS 36-0019. Surface morphology and grain size were observed by atomic force microscopy (AFM) indicating uniform films and average grain size around 40 nm. Images of the cross section of the films were obtained by scanning electron microscopy field emission (SEM-FEG), indicating very uniform thicknesses ranging from 140-700 nm between samples. Capacitance measurements were performed at room temperature using an impedance analyzer. The films presented dielectric constant values of 55-305 at 100kHz and low dielectric loss. The design indicated no significant interaction effects between the deposition parameters on the thickness of the films. The response surface methodology enabled better observes the simultaneous effect of variables.
Resumo:
O processamento térmico de materiais cerâmicos via energia de microondas, no estágio atual, vem ganhando cada dia mais importância, tendo em vista suas inúmeras aplicações, como por exemplo: aplicação de microondas na área de processamento mineral (aquecimento de minérios antes da moagem, secagem, redução carbotérmica de óxidos minerais, lixiviação, fusão, pré-tratamento de minérios e concentrados de ouro refratário, regeneração de carvão, etc. de acordo com Kigman & Rowson, 1998). Em virtude de uma série de vantagens em potencial, frente aos métodos convencionais de aquecimento, como redução no tempo de processamento; economia de energia; diminuição do diâmetro médio das partículas e melhoramento nas propriedades tecnológicas em geral, esta tecnologia vem se destacando. Neste contexto, o objetivo geral deste trabalho, é desenvolver uma pesquisa visando identificar e caracterizar novas opções de matérias-primas cerâmicas como argilas, feldspatos e caulins que sejam eficazes para definir a formulação de uma ou mais massas para produção de componentes de cerâmica estrutural com propriedades físicas, mecânicas e estéticas adequadas após passarem por sinterização convencional e por energia de microondas destacando as vantagens desta última. Além dos requisitos técnicos e de processo, as formulações apresentadas deverão atender às expectativas de preço e de logística de fornecimento. No estudo foram conformados corpos-de-prova por extrusão e prensagem, sinterizados em fornos microondas e convencional, sob ciclos de queima mais rápidos que os atualmente praticados. As matérias-primas foram caracterizadas e analisadas, utilizando as técnicas de fluorescência por raios X (FRX), difração por raios X (DRX), análise térmica diferencial (DTA), análise térmica gravimétrica (DTG), análise granulométrica (AG), microscopia eletrônica de varredura (MEV), absorção d agua (AA), massa especifica aparente (MEA), porosidade aparente (PA), retração linear (RL) e tensão de ruptura e flexão (TRF). Os resultados obtidos indicaram que as propriedades tecnológicas de Absorção de água (AA) e Tensão de Ruptura e flexão (TRF), proposto no trabalho foram adquiridos com sucesso e estão bem além do limite exigido pelas especificações das normas da ABNT NBR 15.270/05 e 15.310/09
Resumo:
Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
Heating rate is one of the main variables that determine a fire cycle. In industrial processes that use high temperatures, greater fire great can reduce the cost of production and increase productivity. The use of faster and more efficient fire cycles has been little investigated by the structural ceramic industry in Brazil. However, one of the possibilities that aims at modernizing the sector is the use of roller kilns and the inclusion of natural gas as fuel. Thus, the purpose of this study is to investigate the effect of heating rate on the technological properties of structural ceramic products. Clay raw materials from the main ceramic industries in the state of Rio Grande do Norte were characterized. Some of the raw materials characterized were formulated to obtain the best physical and mechanical properties. Next, raw materials and formulations were selected to study the influence of heating rate on the final properties of the ceramic materials. The samples were shaped by pressing and extrusion and submitted to rates of 1 °C/min, 10 °C/min and 20 °C/min, with final temperatures of 850 °C, 950 °C and 1050 °C. Discontinuous cycles with rates of 10 °C/min or 15 °C/min up to 600 °C and a rate of 20 °C/min up to final temperature were also investigated. Technological properties were determined for all the samples and microstructural analysis was carried out under a number of fire conditions. Results indicate that faster and more efficient fire cycles than those currently in practice could be used, limiting only some clay doughs to certain fire conditions. The best results were obtained for the samples submitted to slow cycles up to 600 °C and fast fire sinterization up to 950 °C. This paper presents for the first time the use of a fast fire rate for raw materials and clay formulations and seeks to determine ideal dough and processing conditions for using shorter fire times, thus enabling the use of roller kilns and natural gas in structural ceramic industries