3 resultados para Carlomagno Emperador
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Stroke is nowadays one of the main causes of death in Brazil and worldwide. During the rehabilitation process, patients undergo physioterapic exercises based on repetition, which may cause them to feel little progress is being made. Focusing on themes from the areas of Human-Computer Interaction and Motor Imagery, the present work describes the development of a digital game concept aimed at motor rehabilitation to the neural rehabilitation of patients who have suffered a stroke in a playful and engaging way. The research hypothesizes that an interactive digital game based on Motor Imagery contributes to patients' raised commitment in the stroke sequel rehabilitation process. The research process entailed the investigation of 10 subjects who live with sequels caused by stroke - it was further established that subjects were over 60 years old. Using as foundation an initial survey regarding target-users' specificities, where an investigation on subjectrelated aspects was carried out through Focus Group (n=9) and Contextual Analysis (n=3), having as subjects elderly individuals, a list with the necessary requirements for the conceptualization of a digital game was fleshed out. The initial survey also enabled the establishment of preliminary interactions for the formulation of game prototypes. At first, low-resolution prototypes were used, with two distinct interaction models for the game - one with a direct approach to the Motor Imagery concept, and another using a narrative with characters and scene settings. The goal was to verify participants' receptivity regarding the addition of playful activities into game dynamics. Prototypes were analyzed while being used by five patients, through the Cooperative Evaluation technique. The tests indicated a preference for option with elements in a playful narrative. Based on these results high fidelity prototypes were created, where concepts close to the game's final version were elaborated. The High Fidelity prototype was also evaluated with four patients through the Cooperative Evaluation technique. It was concluded that elderly individuals and patients were receptive to the idea of a digital game for the rehabilitation from sequels caused by stroke; that, for the success of devices aimed at these cohorts, their contexts, needs and expectations must be respected above all; and that user-centered design is an essential approach in that regard.
Resumo:
The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.
Resumo:
The primary somatosensory cortex (S1) receives inputs from peripheral tactile receptors and plays a crucial role on many important behaviors. However, the plastic potential of this region is greatly reduced during adulthood, limiting functional recovery after injuries. This fact is due to the presence, in the brain parenchima, of structures and substances that have an inhibitory effect on plasticity, such as chondroitin sulfate proteoglicans (CSP) present in the perineuronal.nets (PNNs) surrounding a subset of neurons. Maturation of PNNs coincide with the closure of critical periods of plasticity in cortical areas, since CSP act to stabilize synaptic contacts. Removal of CSP is proven to be an effective therapeutic approach to restore plasticity and increase the odds of functional recovery after cortical lesion. In the present work, we removed CSP from the sensorimotor cortex of rats to restore plasticity and promote the compensatory morphofunctional regeneration of cortical circuits modified by removal of mystacial vibrissae during the critical period. Treatment with the CSP-digesting enzyme chondroitinase ABC proved efficient to restore plasticity in S1 circuits, as evidenced by morphological rearrangements and functional recovery.