13 resultados para Carboxymethylcellulose

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the rheology of drilling fluids is of fundamental importance to select the best composition and the best treatment to be applied in these fluids. This work presents a study of the rheological behavior of some addictives used as viscosifiers in water-based drilling fluids. The evaluated addictives were: Carboxymethylcellulose (CMC), Xanthan gum (GX), and Bentonite. The main objective was to rheologically characterize suspensions composed by these addictives, by applying mathematical models for fluid flow behavior, in order to determine the best flow equation to represent the system, as well as the model parameters. The mathematical models applied in this research were: the Bingham Model, the Ostwald de Wale Model, and the Herschel-Bulkley Model. A previous study of hydration time for each used addictive was accomplished seeking to evaluate the effect of polymer and clay hydration on rheological behavior of the fluid. The rheological characterization was made through typical rheology experiments, using a coaxial cylinder viscosimeter, where the flow curves and the thixotropic magnitude of each fluid was obtained. For each used addictive the rheological behavior as a function of temperature was also evaluated as well as fluid stability as a function of the concentration and kind of addictive used. After analyses of results, mixtures of polymer and clay were made seeking to evaluate the rheological modifications provided by the polymer incorporation in the water + bentonite system. The obtained results showed that the Ostwald de Waale model provided the best fit for fluids prepared using CMC and for fluids with Xanthan gum and Bentonite the best fit was given by the Herschel-Bulkley one

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study aimed mainly to evaluate the influence of xanthan gum (XG) and carboxymethylcellulose (CMC) in the filtration process of water-based drilling fluids, considering the conformational changes suffered by the polyelectrolyte with the addition of sodium chloride (NaCl) in different concentrations (0.17, 0.34 and 0.51 mol.L-1). It was also evaluated the behavior of the fluid by the addition of calcium carbonate (CaCO3) in pure water and in brine. Seeking a better understanding of the interaction between the polymers used and CaCO3, polymer adsorption analyzes were performed using a depletion method, which yielded a higher percentage of adsorption of Xanthan Gum in this material (29%), which can justify the formation of a thin and waterproof filter cake for drilling fluids containing this polymer. However, the best values of apparent viscosity (20 and 24 mPa.s) and volume of filtrate (8.0 and 8.1 mL) were obtained for the systems consisting of xanthan gum, CMC and CaCO3, in NaCl aqueous solutions concentrations of 0.34 and 0.51 mol.L-1, respectively. The values can be related to the presence of CMC that increases the apparent viscosity and reduces the volume of filtrate. In addition, the CaCO3 added acts as a bridging agent, promoting the formation of a less permeable filter cake

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated the effect of addition of partially hydrolyzed polyacrylamide (HPAM) and bentonite in the physicochemical properties of acquous drilling fluids. Two formulations were evaluated: F1 formulation, which was used as reference, containing carboxymethylcellulose (CMC), magnesium oxide (MgO), calcite (calcium carbonate - CaCO3 ), xanthan gum, sodium chloride (NaCl) and triazine (bactericidal); and F2, containig HPAM steady of CMC and bentonite in substituition of calcite. The prepared fluids were characterized by rheological properties, lubricity and fluid loss. Calcite was characterized by granulometry and thermal gravimetric analysis (TGA). The formulation F2 presented filtration control at 93◦C 34 mL while F1 had total filtration. The lubricity coefficient was 0.1623 for F2 and 0.2542 for F1, causing reduction in torque of 25% for F1 and 52 % for F2, compared to water. In the temperature of 49 ◦C and shear rate of 1022 s −1 , the apparent viscosities were 25, 5 and 48 cP for F1 and F2 formulation, respectively, showing greater thermal resistance to F2. With the confirmation of higher thermal stability of F2, factorial design was conducted in order to determine the HPAM and of bentonite concentrations that resulted in the better performance of the fluids. The statistical design response surfaces indicated the best concentrations of HPAM (4.3g/L) and bentonite (28.5 g/L) to achieve improved properties of the fluids (apparent viscosity, plastic viscosity, yield point and fluid loss) with 95% confidence, as well as the correlations between these factors (HPAM and bentonite concentrations). The thermal aging tests indicated that the formulations containing HPAM and bentonite may be used to the maximum temperature until 150 ◦C. The analyze of the filter cake formed after filtration of fluids by X-ray diffraction showed specific interactions between the bentonite and HPAM, explaining the greater thermal stability of F2 compared to the fluid F1, that supports maximum temperature of 93 ◦C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bionanocomposites systems clay base (montmorillonite and sepiolite), layered double hidroxides and biopolymers (carboxymethylcellulose and zein) were evaluated as topical delivery systems with antibacterial activity and as oral delivery systems. For this study, neomycin, a topical antibiotic, indicated mainly for open wound infections. The drug amoxicillin, an antibiotic indicated mainly for throat infections, were also used in this study. Both antibiotics were used as model drugs. Initially, drugs were incorporated directly into the biopolymer matrix, comprising the combination of carboxymethylcellulos and zein, being conformed as movies and balls and evaluated for their antibacterial activity and controlled release simulating gastrointestinal fluids. Moreover, hybrids materials have been prepared where the neomycin drug was incorporated into the lamellar inorganic solids, such as montmorillonite by ion exchange reaction, and the fibrous type, such as sepiolite by adsorption in aqueous solution. But the drug amoxicillin was incorporated into layered double hydroxides by anion exchange and montmorillonite by cation exchange. The resulting hybrids were in turn combined with the biopolymer matrix yielding bionanocomposites shaped materials such as films were tested for their antibacterial activity, and the shaped materials beads were tested for their release in the gastrointestinal fluids. Through the analysis of various physico-chemical techniques, we observed the interactions between the studied materials, the formation of hybrids materials, obtaining the bionanocomposites materials and material efficiency when applied in controlled release of drugs both topical and use oral mainly influenced by the presence of zein, are promising as topical delivery systems and oral drugs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the well drilling operations problems caused by contamination of the drilling fluid are common. The dissolution of ions from the geological formations affects the rheological and filtration properties of the fluids. These ions shield the charges of ionic polymers, leading to its precipitation. In this work was performed a detailed study on the stability of the properties of aqueous solutions and aqueous drilling fluids in the presence of sulphated and carboxylated polymers, using carboxymethylcellulose and kappa-carrageenan as polymer compounds carboxylated and sulfated model, respectively. The effects of ionic strength of the aqueous medium containing Na+, Mg2+ and Ca2+ on rheological properties of the polymer and drilling fluids solutions were evaluated by varying the concentration of salts, pH and temperature. It was observed that the fluids with κ-carrageenan suffered less influence against the contamination by the ions at pH 9 to 10, even at higher concentrations, but higher influence on pH> 11. The fluids containing carboxymethylcellulose were more sensitive to contamination, with rapid reduction in viscosity and significant increase of the filtrate volume, while the fluid based polymer sulfated kappa-carrageenan showed evidence of interaction with cations and preserve the rheological properties and improved stability the volume of filtrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents the synthesis, characterization and study of the associative behaviour in aqueous media of new responsive graft copolymers, based on carboxymethylcellulose as the water-soluble backbone and Jeffamine® M-2070 e Jeffamine® M-600 (commercial polyetheramines) as the thermoresponsive grafts with high cloud point temperatures in water. The synthesis was performed on aqueous medium, by using 1-ethyl-3- (3-(dimethylamino)-propyl)carbodiimide hydrochloride and N-hydroxysuccinimide as activators of the reaction between carboxylategroupsfrom carboxymethylcellulose and amino groups from polyetheramines. The grafting reaction was confirmed by infrared spectroscopy and the grafting percentage by 1H NMR. The molar mass of the polyetheramines was determined by 1H NMR, whereas the molar mass of CMC and graft copolymers was determined by static light scattering. The salt effect on the association behaviour of the copolymers was evaluated in different aqueous media (Milli-Q water, 0.5M NaCl, 0.5M K2CO3 and synthetic sea water), at different temperatures, through UV-vis, rheology and dynamic light scattering. None of the copolymers solutions, at 5 g/L, turned turbid in Milli-Q water when heated from 25 to 95 °C, probably because of the increase in hydrophibicity promoted by CMC backbone. However, they became turbid in the presence of salts, due to the salting out effect, where the lowest cloud point was observed in 0.5M K2CO3, which was attributed to the highest ionic strength in water, combined to the ability of CO3 2- to decrease polymer-solvents interactions. The hydrodynamic radius and apparent viscosity of the copolymers in aqueous medium changed as a function of salts dissolved in the medium, temperature and copolymer composition. Thermothickening behaviour was observed in 0.5M K2CO3 when the temperature was raised from 25 to 60°C. This performance can be attributed to intermolecular associations as a physical network, since the temperature is above the cloud point of the copolymers in this solvent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical admixtures, when properly selected and quantified, play an important role in obtaining adequate slurry systems for quality primary cementing operations. They assure the proper operation of a well and reduce costs attributed to corrective cementing jobs. Controlling the amount lost by filtering through the slurry to permeable areas is one of the most important requirements in an operation, commonly controlled by chemical admixtures, such as carboxymethylcellulose (CMC). However, problems related to temperature, salttolerance and the secundary retarding effect are commonly reported in the literature. According to the scenario described above, the use of an aqueous dispersion of non-ionic poliurethane was proposed to control the filter loss, given its low ionic interaction with the free ions present in the slurries in humid state. Therefore, this study aims at assessing the efficiency of poliurethane to reduce filter loss in different temperature and pressure conditions as well as the synergistic effect with other admixtures. The temperatures and pressures used in laboratory tests simulate the same conditions of oil wells with depths of 500 to 1200 m. The poliurethane showed resistance to thermal degradation and stability in the presence of salts. With the increase in the concentration of the polymer there was a considerable decrease in the volume lost by filtration, and this has been effective even with the increase in temperature