3 resultados para Carbonate minerals.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Rio do Peixe Basin represents a main basin of northeastern Brazil and pioneering work positioned the rocks of this basin in the Early Cretaceous. However, a recent study, based on integrated pollen analysis from three wells, found an unprecedented siliciclastic sedimentary section, in the region, of early Devonian age. Therefore, the present study aims a detailed petrographic and petrological analysis of this devonian section, in the Rio do Peixe Basin and proposes a diagenetic evolution, to understand the characteristics of the porous system, identify the main reservoir petrofacies with the main factors impacting on the quality of these rocks as reservoirs and a quick study on the provenance of this section. The petrographic study was based on samples obtained from subsurface and surface. The diagenetic evolution of petrofacies and its identification were based only on subsurface samples and the study of provenance was based on surface samples. The thin sections were prepared from sandstones, pelites and sandstones intercalated with pelites. The original detrital composition for this section is arcosean and the main diagenetic processes that affected these rocks occur in various depths and different conditions, which resulted in extensive diagenetic variety. The following processes were identified: early fracture and healing of grains; albitization of K-feldspar and plagioclase; siderite; precipitation of silica and feldspar; mechanical infiltration of clay and its transformation to illite/esmectite and illite; autigenesis of analcime; dissolution; autigenesis of chlorite; dolomite/ferrous dolomite/anquerite; apatite; calcite; pyrite; titanium minerals and iron oxide-hidroxide. The occurrence of a recently discovered volcanism, in the Rio do Peixe Basin, may have influenced the diagenetic evolution of this section. Three diagenetic stages affected the Devonian section: eo, meso and telodiagenesis. This section is compositionally quite feldspathic, indicating provenance from continental blocks, between transitional continental and uplift of the basement. From this study, we observed a wide heterogeneity in the role of the studied sandstones as reservoirs. Seven petrofacies were identified, taking into account the main diagenetic constituent responsible for the reduction of porosity. It is possible that the loss of original porosity was influenced by intense diagenesis in these rocks, where the main constituent for the loss of porosity are clays minerals, oxides and carbonate cement (calcite and dolomite)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, it is proposed the study of the effect of barium oxide acting as synthetic flow in the behavior of masses for stoneware from the use of raw materials found in the deposits of minerals of the Rio Grande do Norte that it makes use of a great natural potential for the industrialization of the product. The porcelanato is a sophisticated product with excellent final properties being applied as ceramic coating in buildings of high standard of engineering. The raw materials selected for the development of the study had been two types of argilas, two types of feldspatos, dolomita, talco, barium carbonate and silica, being characterized by X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis and thermal analysis. Thus, it is intended to define four formulations using the cited raw materials that will be processed, conformed and sintered in the temperatures of 1150 °C, 1175 °C, 1200 °C, 1225 °C e 1250 °C. From the physical characterizations, chemical and morphologic of the formed formulations, the effect of barium oxide is determined in the physical and mechanical properties of the studied system carrying water absorption tests, linear retraction, apparent porosity, apparent specific mass, compacting curve, flexural strength and microstructural analysis by XRD and SEM. After analyzing the results, indicated that barium oxide acts as a flux of high temperature and as the ordering of structure, where the embedded glass phase has the nucleating effect phase potassium silico-aluminum reacting with free silica which together with the high content of potassium concentrated form a new crystalline phase called microcline. The masses studied with the addition of barium oxide present physical-mechanical properties highly satisfactory in reduced firing temperatures, which implies a saving in energy given off in the production and increased productivity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium