2 resultados para Canopy height

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this work was to evaluate the effect of supplements feeding on growth of calves grazing a Panicum maximum cv. Mombaça pasture during the dry season. The experimental design was a randomized blocks with three treatments and three replications. The treatments were: mineral salt ad libidum; multiple mixture (MM) fed at 0.2% of live weight (PV); and, concentrate feed (SC) fed at 0.7% of PV. Thirty six weaned calves averaging eight months and 192 kg of initial live weight were utilized. The masses and pasture components, nutritive value and rate of forage growth were evaluated. Animal performance was measured as average daily gain (ADG) and live weight gain (LWG). The supplemental feeding was adjusted after weighing. There was no difference between periods for forage mass and leaf: stem ratio. The highest values for forage green mass, leaf blades mass and stem percentage were observed in the first trial period. The canopy height and the available forage on offer did not differ among treatments. The percentage of dead was higher for the last periods of evaluation. The leaf: stem ratio and the leaf percentage were greater in the second period. There was significant difference (p<0,05) among treatments for the ADG and were 250, 460 and 770 g/day for salt, MM and SC, respectively. The biggest LWG was observed in the treatment SC. contents of PB, DIVMO, NDF and LDA on leaf blades, thatched roofs and dead material dead not differ among treatments. The highest GPV was observed in the SC treatment. The contents of PB, DIVMO, NDF and LDA for leaf blades stem and dead material did not differ among treatments. Independent of the use supplements , it is possible to keep steers gaining weight, during dry season, since the stocking rate is appropriately adjusted

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward