42 resultados para Camillus, Marcus Furius

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

MELO, Dulce Maria de Araújo et al. Evaluation of the Zinox and Zeolite materials as adsorbents to remove H2S from natural gas. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, Estados Unidos, v. 272, p. 32-36, 2006.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

MELO, Maxymme Mendes de ; PINHEIRO, Andrea Santos ; NASCIMENTO, R. M. ; MARTINELLI, Antonio Eduardo ; DUTRA, Ricardo Peixoto Suassuna ; MELO, Marcus Antônio de Freitas . Análise microestrutural de misturas cerâmicas de grês Porcelanato com adição de chamote de telhas cerâmicas. Cerâmica (São Paulo. Impresso), v. 55, p. 356-364, 2009

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Papyllary cystic tumor of the pancreas, so-called Frantz’s tumor, is rare. Clinical presentation of this disease is usually a slowly growing abdominal mass with or without abdominal pain, affecting predominantly young females. Its pathogenesis is still unknown . Surgical resection is usually curative, and prognosis is excellent. The authors report two pancreatic tumor cases(Frantz’s tumor) in women aged 26 and 31 years old. Pre operative assessment showed a solid-cystic tumor of the tail and body of the pancreas. An extended distal pancreatectomy was performed without splenic preservation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper comprises an investigation on the influence of the variable family backgrounds (father school level, mother school level and family income) over the pupil s performance in admissions examination (entrance test or PROITEC) at Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN). From that point of view, the main goal of this research is to analyze the influence of the family background as a determiner of the pupil´s performance in the access to Technical and Professional education at IFRN. Secondary data were used from two databases (entrance test and PROITEC) adding up to 19.226 observations to the vacancies offered in the year of 2013. Aiming at achieving the proposed goal, a conceptual model composed of three hypothesis was developed. The results were presented in four stages: stage I presentation of the descriptive statistical results of the two databases; stage II separation of the campi in clusters; stage III analysis of multiple regressions; stage IV analysis of the logistics regressions. Two statistical tests were used to validate the hypothesis: T-test and Wald test. Hypothesis 1 and 2 were confirmed and H3 was refused. The results presented favorable causal connections to the family income and the father school level variables (with bigger effect for fathers with a higher education degree). The mother school level variable did not provide statistical significance for this research. Based on this result, after this work, this institution is to develop a strategic plan to assist in the success rate of students preparing diagnoses in order to diminish the effects of the variables that impacted negatively

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil well cementing materials consist of slurries of Special class Portland cement dispersed in water. Admixtures can be used to provide the necessary fluidity, so the material can be efficiently pumped down as well as penetrate porous rocks with controlled filter loss. Construction admixtures can be used to modify the properties of oil well cements provided they can withstand and hold their properties at the higher than ambient temperatures usually encountered in oil fields. In civil construction, superplasticizer play the role of dispersants that reduce the facto r of water cement improve mechanical properties and fluidity of the cement, whereas anti-segregation agents improve the workability of the slurry. In the present study, oil well cement slurries were produced adding both a dispersant and an anti-segregation agent conventionally used in Portland CPII-Z-32 RS cement aiming at materials for primary cementing and squeeze operations. Three basic aspects were evaluated: fluidity, filter loss and the synergetic effect of the admixtures at two temperatures, i.e., 27°C and 56°C, following API RP 10B practical recommendations. The slurries were prepared using admixture concentrations varying from 2.60 Kgf/m3 (0.02 gallft3) to 5.82 Kgf/m3 (0.045 galJft3) BWOC. The density of the slurries was set to 1.89 g/cm3 (15.8 Ib/gal). 0.30 to 0.60% BWOC of a CMC-based anti-segregation agent was added to the cement to control the filter loss. The results showed that the addition of anti-segregation at concentrations above 0.55% by weight of cement resulted in the increased viscosity of the folders in temperatures evaluated. The increasing the temperature of the tests led to a reduction in the performance of anti-segregation. At concentrations of 5.20 kgf/m3 (0,040 gallft3) and 5.82 Kgf/m3 (0,045 gal/ft 3) observed a better performance of the properties evaluated in the proposed system. At low temperature was observed instability in the readings of rheology for all concentrations of anti-segregation. Contents that increasing the concentration of anti¬-segregation is limited concentrations greater than 0.55 % BWOC of the CMC in temperature analyzed. The use of the system with CMC promoted a good performance against the properties evaluated. The principal function of anti¬-segregation was optimized with increasing concentration of superplasticizer, at temperatures above the 2rC. The study of the behaviour of systemic additives, resulting in slurries of cement, which can be optimized face studies of other intrinsic properties in oil fields

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The WTP produce many kinds of residue on your treatment stages, but the sludge is the more problematic from the final disposition point view. The actual rate of residue production deriving from technological evolution and the crescent population needs prevents the subtle equilibrium generation between consumption and recycling/reuse, creating problems of pollution resulting from inappropriate management of residues. Thus, is necessary achieve a new equilibrium between the grow from raw materials and energy and the residue generation. This equilibrium should be achieved by technical and economic feasibility of environmental supported models through recycling and reuse. The red ceramic industry stand out in residue absorption question as raw material due their clay mass heterogeneity, constituted by clay minerals and non-clay minerals with wide mineralogical variation, allowing residue inclusion which act like plastic or non-plastic materials, contributing to retain heavy metals contained in residues in the vitreous mass formed during the burning of the ceramic bodies. This work propose the study of the influence of incorporation of 25 wt.% sludge from wastewater treatment plant, according preliminary results, in the mass to produce ceramic bodies. The raw materials was characterized through chemical composition analyses by XRF, mineralogical analyses by XRD, thermal analyses by TG and DTA, Atterberg limits and thermodilatometry. Subsequently was composed the mass with 75 wt.% of clay and 25 wt.% of dried wastewater sludge from UFRN WWTP. Samples with 6,0 x 2,0 x 0,5 cm was produced with unidirectional compacting under pressure of 20MPa and burned in temperatures between 950 and 1,200ºC. After fired, the ceramic bodies have been submitted to physical and mechanical analyses through the measure of firing shrinkage, water absorption, density, apparent porosity and flexural strength; crystallographic analyses through XRD and microstructure analyses by SEM. The technological properties obtained was satisfactory to production of roof tiles with 25 wt.% at 1,200 ºC, but the production of others products at lower temperatures was not feasible

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several problems related to the loss of hydraulic seal in oilwells, causing gas migration and/or contamination of the production zone by water, have been reported. The loss of the hydraulic seal is a consequence of cracks which can be occasioned either by the invasion of gas during the wait on cement or by the expansion of the casing causing the fracture of the cement sheath. In case of the pressure of the formation is higher than the pressure in the annulus, gas can migrate into the slurry and form microannulus, which are channels where gas migrates after the cement is set. Cracks can be also occasioned by the fracture of the cement sheath when it does not withstand the thermal and dynamic loads. In reservoirs where the oil is heavy, steam water injection operation is required in order to get the oil flowing. This operation increases the temperature of the casing, and then it expands and causes the fracture of the cement sheath in the annulus. When the failures on the cement are detected, remedial cementing is required, which raise costs caused by the interventions. Once the use of cement in the construction civil sector is older than its use in the petroleum sector, it is common to bring technologies and solutions from the civil construction and apply them on the petroleum area. In this context, vermiculite, a mineral-clay widely encountered in Brazil, has been used, on its exfoliated form, in the civil construction, especially on the manufacture of lights and fireproof concretes with excellent thermal and acoustical properties. It has already been reported in scientific journals, studies of the addition of exfoliated vermiculite in Portland cements revealing good properties related to oilwell cementing operations. Thus, this study aimed to study the rheological behavior, thickening time, stability and compressive strength of the slurries made of Portland cement and exfoliated vermiculite in 5 different compositions, at room temperature and heated. The results showed that the compressive strength decreased with the addition of exfoliated vermiculite, however the values are still allowed for oiwell cementing operations. The thickening time of the slurry with no exfoliated vermiculite was 120 min and the thickening time of the slurry with 12 % of exfoliated vermiculite was 98 min. The stability and the rheological behavior of the slurries revealed that the exfoliated vermiculite absorbed water and therefore increased the viscosity of the slurries, even though increasing the factor cement-water. The stability experiment carried out at 133 ºF showed that, there was neither sedimentation nor reduction of the volume of the cement for the slurry with 12 % of exfoliated vermiculite. Thus, the addition of exfoliated vermiculite accelerates the set time of the cement and gives it a small shrinkage during the wait on cement, which are important to prevent gas migration

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cells unitaria of the solid oxide fuel cell are separated by means of interconnects, which serve as electrical contact between the cells. Lanthanum Chromite (LaCrO3) has been the most common material used as interconnect in solid oxide fuel cells. Reducing the operating temperature around 800 º C of cells to solid oxide fuel make possibilite the use of metallic interconnects as an alternative to ceramic LaCrO3. Metallic interconnects have advantages over ceramic interconnects such as high thermal conductivity, electricity, good ductility, low cost, good physical and mechanical properties. In this work evaluate the thermo-mechanical properties of the metallic substrate and coated metallic substrate with the ceramic LaCrO3 film via spray-pyrolysis, in order to demonstrate the feasibility of using this material as a component of a fuel cell solid oxide. The materials were characterized by X-ray diffraction, oxidation behavior, mechanical strength, optical microscopy (OM) and scanning electron microscopy (SEM). The X-ray diffraction proved the formation phase of the LaCrO3 on the metallic substrate and the identification of the phases formed after the oxidative test and mechanical strength at high temperature. The oxidation behavior showed the increased oxidation resistance of the coated metallic substrate. It was noted that the mechanical resistance to bending of the coated metallic substrate only increases at room temperature. The optical microscopy (OM) has provided an assessment of both the metallic substrate and the LaCrO3 film deposited on the metal substrate that, in comparison with the micrographs obtained from SEM. The SEM one proved the formation of Cr2O3 layer on the metallic substrate and stability of LaCrO3 film after oxidative test, it can also observe the displacement of the ceramic LaCrO3 film after of mechanical testing and mapping of the main elements as chromium, manganese, oxygen, lanthanum in samples after the thermo-mechanical tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Population growth experienced in major cities, allied to society s need of infra-structure, especially ones related to habitational demands, increases the consumption of construction materials. As a consequence, consumption of natural resources itself. Thus, due to this process, concrete is one of the most produced materials in civil construction. This is also due to the great diversity of its application, easiness in its execution and adequate mechanical performance, as well as low production costs. Following the same tendencies in construction development, the ceramic industry has intensified the production of porcelain ceramic tiles and floors. These are achieved by a fine finishing and receive polishing at the end of the fabrication process. This work researched the use of porcelain residues in polishing for the production of concrete. All of which; due to economical and environmental issues. This process aims to prove adequate destiny for this type of residue, due to environmental issues, incorporating it to the concrete itself; all of which provides economy in consumption of the materials that constitute concrete. Thus, the main characteristics of concrete were investigated through the inclusion of different concentration of the porcelain residue as additional trait element. The residue rates incorporated to the trait varied from 10% to 50% in relation to the cement mass, in the traits with plastic additives and without plastic additives. It is observed that the inclusion of porcelain residue produced a meaningful alteration in the consistency of fresh concrete. This residue has a fine granulometry and it considerably absorbed the water used in the concrete spreading, influencing the way this material is dealt with. Thus, the value of cement striking decreases with the increase of residues present in trait. The maximal incorporation of the residue was of 50%, massively, for the same factor water/initial cement. The use of residues in concrete results in an 40% increase in the compression resistance. It is also proportional to residue concentration of porcelain in the trait. The microstructure was also favored once porosity and concrete absorption decreases with the use of this residue. The parameters demonstrate the quality and durability of the concrete produced with this residue. The use of porcelain residue in concrete composition has not produced meaningful thermal behavior changes. Thermal conductivity, heat capacity and thermal diffusivity have been maintained basically constant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northeastern region of Brazil has a large number of wells producing oil using a method of secondary recovery steam injection, since the oil produced in this region is essentially viscous. This recovery method puts the cement / coating on thermal cycling, due to the difference in coefficient of thermal expansion between cement and metal coating causes the appearance of cracks at this interface, allowing the passage of the annular fluid, which is associated with serious risk socioeconomic and environmental. In view of these cracks, a correction operation is required, resulting in more costs and temporary halt of production of the well. Alternatively, the oil industry has developed technology for adding new materials in cement pastes, oil well, providing high ductility and low density in order to withstand the thermo-mechanical loads generated by the injection of water vapor. In this context, vermiculite, a clay mineral found in abundance in Brazil has been applied in its expanded form in the construction industry for the manufacture of lightweight concrete with excellent insulation and noise due to its high melting point and the presence of air in their layers lamellar. Therefore, the vermiculite is used for the purpose of providing low-density cement paste and withstand high temperatures caused by steam injection. Thus, the present study compared the default folder containing cement and water with the folders with 6%, 8% and 10% vermiculite micron conducting tests of free water, rheology and compressive strength where it obtained the concentration of 8 % with the best results. Subsequently, the selected concentration, was compared with the results recommended by the API standard tests of filtered and stability. And finally, analyzed the results from tests of specific gravity and time of thickening. Before the study we were able to make a folder with a low density that can be used in cementing oil well in order to withstand the thermo-mechanical loads generated by steam injection

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of waste produced on large scale during the well drilling is the gravel drilling. There are techniques for the treatment of the same, but there isn t consensus on what are the best in terms of economic and environmental. One alternative for disposal of this waste and objective of this paper is the incorporation and immobilization of gravel clay matrix to assess their technological properties. The Raw Materials used were characterized by the following techniques: Chemical Analysis by X-ray fluorescence (XRF), mineralogical analysis by X-ray Diffraction (XRD), Grain Size Analysis (FA) and Thermal Analysis by Thermogravimetry (TG) and thermodiferential (DTA). After characterizing, samples were formulated in the following percentages: 0, 5, 10, 15, 25, 50, 75, 100% (weight) of gravel drilling, then the pieces were pressed, dried (110 ° C) and sintered at temperatures of 850, 950 and 1050 ° C. After sintering, samples were tested for water absorption, linear shrinkage, flexural strength, porosity, density, XRD and test color. The results concluded that the incorporation of gravel drilling is a viable possibility for solid masonry bricks and ceramic blocks manufacture at concentrations and firing temperature described here. Residue incorporation reduces an environmental problem, the cost of raw materials for manufacture of ceramic products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current environmental concerns include the excessive consumption and inefficient use of non-renewable natural resources. The construction industry is considered one of the largest consumers of natural raw materials, significantly contributing to the environmental degradation of the planet. The use of calcareous quarry (RPPC) and porcelain tile polishing residues (RPP) as partial replacements of the cement in mortars is an interesting alternative to minimize the exploration of considerably large amounts of natural resources. The present study aimed at investigating the properties of fresh and hardened mortars produced using residues to replace cement. The residues used were fully characterized to determine their specific mass, unitary mass, particle size distribution and morphology, and composition. The performance of the mortars was compared to that of reference compositions, prepared without residues. A total of 18 compositions were prepared, 16 using residues and 2 reference ones. The mortars were prepared using Portland CP II F 32 cement, CH I hydrated lime, river sand and tap water. The compositions of the mortars were 1:1:6 and 1:0.5:4.5 (vol%), and water to cement ratios of 1.87 and 1.45 were used, respectively. The mortars in the fresh state were evaluated by consistency index, water retention, density of mass and incorporated air content tests. In their hardened state, the mortars were evaluated by apparent mass density, modulus of elasticity, flexural tensile strength, compressive strength and water absorption by capillarity. The mortars were also analyzed by scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction and fluorescence. Finally, they were classified according to NBR 13281 standards. The mortars prepared using residues partially replacing the cement exhibited lower modulus of elasticity compared to the reference compositions, thus improving the performance in their intended use. On the downside, the water absorption by capillarity was affected by the presence of residues and both the tensile and compressive strength were reduced. However, from the overall standpoint, the replacement of cement by calcareous quarry or porcelain tile polishing residues did not result in significant changes in the properties of the mortars. Therefore, compositions containing these residues can be used in the construction industry