11 resultados para Calor - Convecção natural
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Licuri is a palm tree from the semiarid regions of Bahia State, Brazil. It is an important source of food and feed in that region, since their nuts are commonly eaten by humans and used as maize substitute for poultry feeding. The aim of this dissertation is to study the feasibility for use of natural convection solar dryers and forced being compared with the traditional drying outdoors for drying coconut licuri Syagrus coronate. The study led to the construction of two prototype solar dryer for carrying out experiments proving: model Solar Drying System Direct Exposure to Natural Convection built with wood, has a drying chamber with direct cover transparent glass laminates 4 mm, using techniques for proper isolation of the drying chamber. The two prototypes were comparatively analyzed for performance and drying efficiency with traditional extractive use by the community. Were evaluated the variables: time and drying rates and quality of the final samples of coconut licuri. The fruits were harvested and brought the town of Ouricuri, in the city of Caldeirão Grande, BA for the experiments comparing the three methods of drying was used a standard load of 4.0 kg The quantitative analysis for the result of the drying rate was found in 74% yield and 44% for natural and forced convection respectively compared with the traditional drying. These drying rates represent variation 3-5 times lower. Drying using forced convection licuri showed better quality, was found in a reddish pulp, representing the quantities that were kept of the nutrient beta carotene, and not notice the flavor change from the previous system, the final cost of construction of this system were higher . The prototypes built competitive advantage and had testified fully to resolve the technical difficulties previously encountered in the production of products made of coconut licuri. Allowing add value and increase their potential use for the fruit extractive communities of semi-arid region of Bahia
Resumo:
The development of home refrigerators generally are compact and economic reasons for using simplified configuration. The thermodynamic coefficient of performance ( COP ) is limited mainly in the condenser design for reasons of size and arrangement ( layout ) of the project ( design ) and climatic characteristics of the region where it will operate. It is noteworthy that this latter limitation is very significant when it comes to a country of continental size like Brazil with diverse climatic conditions. The COP of the cycle depends crucially on the ability of heat dissipated in the condenser. So in hot climates like the northeast, north, and west-central dispel ability is highly attenuated compared to the south and southeast regions with tropical or subtropical climates when compared with other regions. The dissipation in compact capacitors for applications in domestic refrigeration has been the focus of several studies, that due to its impact on reducing costs and power consumption, and better use of the space occupied by the components of refrigeration systems. This space should be kept to a minimum to allow an increase in the useful storage volume of refrigerator without changing the external dimensions of the product. Due to its low cost manufacturing, wire on tube condensers continue to be the most advantageous option for domestic refrigeration. Traditionally, these heat exchangers are designed to operate under natural convection. Not always, the benefits of greater compactness of capacitors for forced outweigh the burden of pumping air through the external heat exchanger. In this work we propose an improvement in convective condenser changing it to a transfer mechanism combined in series with conductive pipes and wire to a moist convective porous medium and the porous medium to the environment. The porous media used in the coating was composed of a gypsum plaster impregnated fiber about a mesh of natural cellulosic molded tubular wire mesh about the original structure of the condenser , and then dried and calcined to greater adherence and increased porosity. The proposed configuration was installed in domestic refrigeration system ( trough ) and tested under the same conditions of the original configuration . Was also evaluated in the dry condition and humidified drip water under natural and forced with an electro - fan ( fan coil ) convection. Assays were performed for the same 134- refrigerant charge e under the same thermal cooling load. The performance was evaluated in various configurations, showing an improvement of about 72 % compared with the original configuration proposed in humidification and natural convection.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
This work aims to study the drying of cashew-nut pulp with different lay-out of dryers using conventional and solar energy. It concerns with the use of exceeding of the regional raw material and the suitable knowledge for the applicability of the drying systems as pathway for food conservation. Besides, it used renewable sources as solar energy to dry these agroindustrial products. Runs were carried out using a conventional tray-dryer with temperature, air velocity control and cashew slice thickness of 55°C, 65°C, 75°C; 3.0; 4.5, 6.0 m s-1; 1.0; 1.5 and 2.0 cm, respectively, in order to compare the studied systems. To evaluate the conventional tray-dryer, it was used a diffusional model of 2nd Fick´s law, where the drying curves were quite well fitted to an infinite flat plate design. For the drying runs where the room temperature had no control, it was developed a phenomenological-mathematical model for the solar dryer with indirect radiation under natural and forced convection based on material and energy balances of the system. Besides, it was carried out assays in the in natura as well as dehydrated, statistic analysis of the experimental drying data, sensorial analysis of the final dry product and a simplified economical analysis of the systems studied
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection
Resumo:
The natural gas perform a essential paper, not only in primary sectors of energy, but also in others sectors of economy. The use natural gas will have expansion in Brazil, motivated by governmental decision to increase the participation of this fuel in the Brazilian energy matrix from 4% to 12% up until 2010. in order to reach the objective related to increase the consumption of natural gas in the energy matrix and to propose solutions to attend the electric requirements of heart and refrigeration, using natural gas as primary power plant. This thesis has a main objective to analysis the perception of businessmen of hotel sector about the feasability of investment with micro-cogeneration system by natural gas in their hotel in turistic sector, in Natal/RN. It s show a case for the hotels selected analyzing the actual knowledge of businessmen about alternative of new technology in generation of owner energy. There was make a interview using a standard form researching information about this topic. In this interview has shown 4 (four) canaries for businessmen with different configurations of investment in micro-cogeneration. Two of this canaries uses the project finance like option to make fasible this projects. The resulteis showed who businessmen has insecurity to make decision to put in office alone, or with a local company, and perhaps with a national company to perform for a alternative energy system, justifying, the alone feasability and without information by local businessmen. Apart from that, they are receptive for a option to put in office in micro-cogeneration configured in the settings using project finance
Resumo:
The main goal of the present work is related to the dynamics of the steady state, incompressible, laminar flow with heat transfer, of an electrically conducting and Newtonian fluid inside a flat parallel-plate channel under the action of an external and uniform magnetic field. For solution of the governing equations, written in the parabolic boundary layer and stream-function formulation, it was employed the hybrid, numericalanalytical, approach known as Generalized Integral Transform Technique (GITT). The flow is sustained by a pressure gradient and the magnetic field is applied in the direction normal to the flow and is assumed that normal magnetic field is kept uniform, remaining larger than any other fields generated in other directions. In order to evaluate the influence of the applied magnetic field on both entrance regions, thermal and hydrodynamic, for this forced convection problem, as well as for validating purposes of the adopted solution methodology, two kinds of channel entry conditions for the velocity field were used: an uniform and an non-MHD parabolic profile. On the other hand, for the thermal problem only an uniform temperature profile at the channel inlet was employed as boundary condition. Along the channel wall, plates are maintained at constant temperature, either equal to or different from each other. Results for the velocity and temperature fields as well as for the main related potentials are produced and compared, for validation purposes, to results reported on literature as function of the main dimensionless governing parameters as Reynolds and Hartman numbers, for typical situations. Finally, in order to illustrate the consistency of the integral transform method, convergence analyses are also effectuated and presented
Resumo:
Many species have specialized to live in the most varied existing environments showing the remarkable adaptability of the microbial world the most diverse physicochemical conditions. Environments exposed to natural radiation and metals are scarce around the world, presenting a microbiota still unknown. With a total number estimated between 4 and 6 x 1030 microrganisms on earth, they constitute an enormous biological and genetic pool to be explored. Metagenomic approach independent of cultivation, provides a new form to access to the potential genomic environmental samples becoming a powerful tool for the elucidation of ecological functions, metabolic profiles, as well as to identify new biomolecules. In this context, the genetic material of environmental soil and water samples from Açude Boqueirao Parelhas-RN, under the influence of natural radiation and the presence of metals, was extracted, pirosequencing and the generated sequences were analyzed by bioinformatics programs (MG-RAST and STAMP). Taxonomic comparative profiles of both samples showed high abundance of Domain Bacteria, followed by a small portion attributable to Eucaryota Domains, Archaea and Viruses. Proteobacteria, Actinobacteria and Bacterioidetes phyla showed the greater dominance in both samples. Important genera and species associated with resistance to various stressors found in region were observed. Sequences related to oxidative and heat stress, DNA replication and repair, and resistance to toxic compounds were observed, suggesting a significant relationship between the microbiota and their metabolic profile, influenced by regional environmental variables. The results of this study add valuable and unpublished data on the composition of microbial communities in these regions
Resumo:
The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.
Resumo:
The development of composite materials encompasses many different application areas. Among the composites, it is had, especially, the materials of organic origin, which have the greatest potential for biodegradability and so, have been bringing relevance and prominence in the contemporary setting of environmental preservation and sustainable development. Following this perspective of ecological appeal, it was developed a biocomposite material with natural inputs typically brazilian. This composite was made from latex (natural rubber) and carnauba fiber in different mass proportions. Formulations had varied by 5%, 10%, 15% and 20% of fiber in relation the matrix. This material has been designed aiming at application in thermal insulation systems, which requirethermal protection surfaces and/or reduction of thermal energy loss. Therefore, the composite was characterized by thermal conductivity testing, specific heat, thermal diffusivity and thermogravimetry. As has also been characterized for their physical-mechanical, by testing density, moisture content, tensile strength, hardness and scanning electron microscopy (SEM). The characterization of the material revealed that the composite presents a potential of thermal insulation higher than the natural rubber, that was used as reference. And the formulation at 15% fiber in relation the matrix showed the best performance. Thus, the composite material in question presents itself as a viable and effective alternative for new thermal insulation material design.
Resumo:
Nowadays, most of the hydrocarbon reserves in the world are in the form of heavy oil, ultra - heavy or bitumen. For the extraction and production of this resource is required to implement new technologies. One of the promising processes for the recovery of this oil is the Expanding Solvent Steam Assisted Gravity Drainage (ES-SAGD) which uses two parallel horizontal wells, where the injection well is situated vertically above the production well. The completion of the process occurs upon injection of a hydrocarbon additive at low concentration in conjunction with steam. The steam adds heat to reduce the viscosity of the oil and solvent aids in reducing the interfacial tension between oil/ solvent. The main force acting in this process is the gravitational and the heat transfer takes place by conduction, convection and latent heat of steam. In this study was used the discretized wellbore model, where the well is discretized in the same way that the reservoir and each section of the well treated as a block of grid, with interblock connection with the reservoir. This study aims to analyze the influence of the pressure drop and heat along the injection well in the ES-SAGD process. The model used for the study is a homogeneous reservoir, semi synthetic with characteristics of the Brazilian Northeast and numerical simulations were performed using the STARS thermal simulator from CMG (Computer Modelling Group). The operational parameters analyzed were: percentage of solvent injected, the flow of steam injection, vertical distance between the wells and steam quality. All of them were significant in oil recovery factor positively influencing this. The results showed that, for all cases analyzed, the model considers the pressure drop has cumulative production of oil below its respective model that disregards such loss. This difference is more pronounced the lower the value of the flow of steam injection