5 resultados para Cadence
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Objective: To examine the effects of treadmill inclinations on the walking of hemiparetic chronic subjects. Design: Observational descriptive study. Location: Laboratory of human movement analysis. Participants: Eighteen subjects, 10 men and 8 women were evaluated, with a mean age of 55.3 ± 9.3 years and the time since the injury of about 36 ± 22.8 months. Intervention: Not applicable. Main Outcome Measures: All subjects were evaluated for functional independence (Functional Independence Measure - FIM) and balance (Berg Balance Scale). Angular variations of the hips, knees and ankles in the sagittal plane were observed, as well as the speed of the movement (m/s), cadence (steps/min), stride length (m), cycle time (s), step time on the paretic leg and on the non-paretic leg (s), support phase time and balance phase time on the paretic leg (s) and the ratio of symmetry inter-limb as subjects walked on a treadmill at three conditions of inclination (0%, 5% and 10% ). Results: There were angular increases in the initial contact of the hip, knee and ankle, amplitude increase in the hip between 0% and 10% (37.83 ± 5.23 versus 41.12 ± 5.63, p < 0,001) and 5% and 10% (38.80 ± 5.96 versus 41.12 ± 5.63, p = 0,002), amplitude increases in the knee between 0% and 10% (47.51 ± 15.07 versus 50, 30 ± 12.82, p = 0,040), extension decreases in the hip, dorsiflexion increases in the balance phase and in the time of support phase from 0% to 5% (0.83 ± 0.21 versus 0.87 ± 0, 20, p = 0,011) and 0% and 10% (0.83 ± 0.21 versus 0.88 ± 0.23, p = 0,021). Conclusion: The treadmill inclination promoted angle changes as such as the increase of the angle of the hip, knee and ankle during the initial contact and the balance phase and the increase of the range of motion of the hip and knee; furthermore, it also promoted the increase of the support time of the paretic lower limb
Resumo:
The purpose of the study was to compare hemiparetic gait overground and on the treadmill. Seventeen chronic stroke patients were included in the study. They walked overground and on a treadmill level at the same speed. The Qualisys Medical AB motion analysis system was used to quantify the joint kinematic of the paretic lower limb and the spatio-temporal parameters on the two conditions: overground walking and treadmill walking on three samples of 5-minutes. During the first sample, the subjects walked on the treadmill with greater cadence, shorter stride length, shorter step time on the lower paretic limb, greater range of motion in the hip and knee, greater knee flexion at the initial contact, more extension of the knee and lower dorsiflexion of the ankle at the stance phase. It is important to emphasize that the maximal knee flexion and ankle dorsiflexion just occurred later on the treadmill. Comparisons between each walking sample on the treadmill hadn t revealed any changes on the gait parameters over time. Nonetheless, when analyzing the third walking sample on the treadmill and overground, some variables showed equivalence as such as the total range of motion of the hip, the knee angle at the initial contact and its maximal extension at the stance phase. In summary, walking on a treadmill, even thought having some influence on the familiarization process, haven t demonstrated a complete change in its characteristics of hemiparetic chronic patients
Resumo:
Background: Down syndrome (DS) is a genetic alteration characterized by being a nonprogressive congenital encephalopathy. Children with DS have hypotonia and developmental delays that interfere in the movement`s acquisition for these children. Objective: Analyze the effects of treadmill inclination on angle and spatiotemporal gait characteristics of these individuals. Methodology: We studied 23 subjects of both sexes, with ages ranged between 05 and 11 years, they presented ability to walk on level 5 classified according to the Functional Ambulation Category (FAC). Initially held a subjective evaluation of balance through a questionnaire (Berg Balance Scale-BBS) then the kinematic gait analysis was realized on a treadmill first, without inclination and then, with inclination of 10%, using the motion system analysis Qualisys System. Data analysis was done using BioStat 5.0 attributing significance level of 5%. Normality of data was verified using D'Agostino test and later was applied paired t-test to compare data in two experimental conditions. Results: There was a statistically significant difference in the spatiotemporal variables: reduction in the cadence (from 108.92 ± 39.07 to 99.11 ± 27.51, p <0.04), increase in cycle time (from 1.24 ± 0.27 to 1.36 ± 0.34, p = 0.03 ) and increase in time to take stock (from 0.77 ± 0.15 to 0.82 ± 0.18, p <0.001). Angular variables that showed statistically significant increasing were: the hip in the initial contact (12.23 ± 4.63 to 18.49 ± 5.17, p <0.0001) and max. flexion in balance (12.96±4:32 to 19.50 ± 4.51, p <0.0001 ), knee in the initial contact (15.59 to ± 6.71 to 21.63 ± 6.48, p <0.0001), the ankle in the initial contact (-2.79 ± 9.8 to 2.25 ± 8.79, p <0.0001), max dorsiflexion in stance (4.41 ± 10.07 to 7.13 ± 11.58, p <0.0009), maximum plantar flexion in the pre-assessment of the ankle joint (increase of -6.33 ± 8.77 to -2.69 ± 8.62, p <0.0004).Conclusions: The inclination acts in a positive way for angular and spatiotemporal features gait of children with Down syndrome, demonstrating possible benefit of using this surface in the gait rehabilitation of children with Down Syndrome
Resumo:
BACKGROUND: Treadmill training with partial body weight support (BWS) has shown many benefits for patients after a stroke. But their findings are not well known when combined with biofeedback. OBJETIVE: The purpose of this study was to evaluate the immediate effects of biofeedback, visual and auditory, combined with treadmill training with BWS on on walking functions of hemiplegic subjects. METHODS: We conducted a clinical trial, randomized controlled trial with 30 subjects in the chronic stage of stroke, underwent treadmill training with BWS (control), combined with visual biofeedback, given by the monitor of the treadmill through the symbolic appearance of feet as the subject gave the step; or auditory biofeedback, using a metronome with a frequency of 115% of the cadence of the individual. The subjects were evaluated by kinematics, and the data obtained by the Motion Analysis System Qualisys. To assess differences between groups and within each group after training was applied to ANOVA 3 x 2 repeated measures. RESULTS: There were no statistical differences between groups in any variable spatio-temporal and angular motion, but within each group there was an increase in walking speed and stride length after the training. The group of visual biofeedback increased the stance period and reduced the swing period and reason of symmetry, and the group auditory biofeedback reduced the double stance period. The range of motion of the knee and ankle and the plantar flexion increased in the visual biofeedback group. CONCLUSION: There are no differences between the immediate effects of gait training on a treadmill with BWS performed with and without visual or auditory biofeedback. However, the visual biofeedback can promote changes in a larger number of variables spatiotemporal and angular gait
Resumo:
Background: The gait automaticity loss difficults realization of concurrent activities - Dual Task (DT). In these situations, individuals with Parkinson`s disease (PD) show a significant reduction in gait velocity and stride length, as strides variability and asymmetry increased, factors predisposing to falls. However, recent studies have shown that training involving DT may cause subsequent improvements in gait variables with DT in individuals with PD. The treadmill use was adopted by this study, by promoting greater regularity in step and enhance training. Objective:To investigate immediate effects of gait training associated with cognitive tasks on gait in individuals with PD. Methods: Twenty-two volunteers were randomly divided into two groups: control group (n = 11), who performed gait training on a treadmill for 20 minutes, and the experimental group (n = 11), who performed treadmill gait training for 20 minutes associated with cognitive tasks of verbal fluency, memory, and spatial planning. Participants were evaluated in phase on of antiparkinsonian medication as the demographic, clinical and anthropometric (identification form), cognitive status (Montreal Cognitive Assessment - MoCA), executive function (Frontal Assessment Battery), level of physical disability (Hoehn and Yahr Modified), motor and functional status (Unified Rating Scale for Parkinson`s Disease - UPDRS), and kinematics (Qualisys Motion Capture System). Results: There were not differences between groups, but both showed improvement after the intervention. The control group had an increase in velocity (p = 0.008), stride length (p = 0.04), step length (p = 0.02) and decreased double support time(p = 0.03). The experimental group showed an increase in speed (p = 0.002), stride length (p = 0.008), step length (p = 0.02) and cadence (p = 0.01), as well as a decrease in the width stride (p = 0.001) and total support time (p = 0.02). As the angular variables, the experimental group had a significant increase in the initial contact angle of ankle (p = 0.01). Conclusion: The gait training combined with cognitive activities didn`t provide significant improvements in gait variables with DT, but this study was the first to demonstrate that gait training on treadmill as simple task minimized the negative interference of DT in PD