7 resultados para CST
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
ln this work, planar quasi- Y agi antennas are investigated based on the concept of the classic Y agi_Uda antennas. These antennas represent improvements on the topologies of the antennas existing printed because they present characteristics of broad bandwidth, excellent radiation diagrams and simple construction. New configurations are adapted for the driver of the antennas, introducing patches elements into the driver. These new configurations are named Patches Elements Anteonas (PEA). This adaptation is obtained from simulations that are executed usiog the software C8T Microwave 8tudio 5. After doing the optimizations, procedures for construction and measurement ofthe prototypes are executed in order to improve the performance of the antennas in such way that they could be used in wireless communication applications, such as Bluetooth, WLAN' s and Wi-Fi. Next, the quasi- Y agi antennas are studied in order to implement them in arrangements. The arrangements construction is based 00 the best driver configuration of the antenna developed in this work. First, a linear arrangement composed by two elements of quasi¬Yagi antennas is constructed in such way that the radiation characteristics and the mutual coupling effects could be analyzed. After that, a 90° angle arrangement composed by two elements is studied to observe the effect of circular polarization. Experiments are executed in order to evaluate the arrangements performance. The experimental results show that the analysis made in this work is efficient and accurate. The numerical values obtained for the analyzed parameters of each structure developed are compared with the experimental values. 80, it is possible to observe a good concordance between them. Finally, some future works proposals are presented
Resumo:
This work is the analysis of a structure of the microstrip antenna designed for application in ultra wide band systems (Ultra Wideband - UWB). This is a prospective analytical study where they tested the changes in the geometry of the antenna, observing their suitability to the proposed objectives. It is known that the UWB antenna must operate in a range of at least 500 MHz, and answer a fractional bandwidth greater than or equal to 25%. It is also desirable that the antenna meets the specifications of track determined by FCC - Federal Communication Commission, which regulates the system in 2002 designating the UWB bandwidth of 7.5 GHz, a range that varies from 3.1 GHz to 10, 6 GHz. by setting the maximum power spectral density of operation in -41.3 dB / MHz, and defining the fractional bandwidth by 20%. The study starts of a structure of geometry in the form of stylized @, which evolves through changes in its form, in simulated commercial software CST MICROWAVE STUDIO, version 5.3.1, and then tested using the ANSOFT HFSS, version 9. These variations, based on observations of publications available from literature referring to the microstrip monopole planar antennas. As a result it is proposed an antenna, called Monopole Antenna Planar Spiral Almost Rectangular for applications in UWB systems - AMQEUWB, which presents simulated and measured results satisfactory, consistent with the objectives of the study. Some proposals for future work are mentioned
Resumo:
This work presents a theoretical and experimental analysis about the properties of microstrip antennas with integrated frequency selective surfaces (Frequency Selective Surface - FSS). The integration occurs through the insertion of the FSS on ground plane of microstrip patch antenna. This integration aims to improve some characteristics of the antennas. The FSS using patch-type elements in square unit cells. Specifically, the simulated results are obtained using the commercial computer program CST Studio Suite® version 2011. From a standard antenna, designed to operate in wireless communication systems of IEEE 802.11 a / b / g / n the dimensions of the FSS are varied to obtain an optimization of some antenna parameters such as impedance matching and selectivity in the operating bands. After optimization of the investigated parameters are built two prototypes of microstrip patch antennas with and without the FSS ground plane. Comparisons are made of the results with the experimental results by 14 ZVB network analyzer from Rohde & Schwarz ®. The comparison aims to validate the simulations performed and show the improvements obtained with the FSS in integrated ground plane antenna. In the construction of prototypes, we used dielectric substrates of the type of Rogers Corporation RT-3060 with relative permittivity equal to 10.2 and low loss tangent. Suggestions for continued work are presented
Resumo:
This work studies the development, implementation and improvement of a macroscopic model to describe the behavior of the spouted bed dryer with continuous feeding for pastes and suspensions drying. This model is based on the CST model (Freire et al., 2009) and the model of Fernandes (2005), whose theoretical foundation is based on macroscopic mass and heat balances for the three phases involved in the process: gas, liquid and solid. Because this technique is quite relevant, the studies of modeling and simulation of spouted bed drying are essential in the analysis of the process as a whole, because through them it is possible to predict and understand the behavior of the process, which contributes significantly to more efficient project and operation. The development and understanding of the phenomena involved in the drying process can be obtained by comparing the experimental data with those from computer simulations. Such knowledge is critical for choosing properly the process conditions in order to obtain a good drying efficiency. Over the past few years, researches and development of works in the field of pastes and suspensions drying in spouted bed has been gaining ground in Brazil. The Particulate Systems Laboratory at Universidade Federal do Rio Grande do Norte, has been developing several researches and generating a huge collection of experimental data concerning the drying of fruit pulps, vegetables pastes, goat milk and suspensions of agro-industrial residues. From this collection, some data of goat milk and residue from acerola (Malpighia glabra L.) drying were collected. For the first time, these data were used for the development and validation of a model that can describe the behavior of spouted bed dryer. Thus, it was possible to model the dryer and to evaluate the influence of process variables (paste feeding, temperature and flow rate of the drying air) in the drying dynamics. We also performed water evaporation experiments in order to understand and to study the behavior of the dryer wall temperature and the evaporation rate. All these analysis will contribute to future works involving the implementation of control strategies in the pastes and suspensions drying. The results obtained in transient analysis were compared with experimental data indicating that this model well represents the process
Resumo:
The objective of this study was to produce biofuels (bio-oil and gas) from the thermal treatment of sewage sludge in rotating cylinder, aiming industrial applications. The biomass was characterized by immediate and instrumental analysis (elemental analysis, scanning electron microscopy - SEM, X-ray diffraction, infrared spectroscopy and ICP-OES). A kinetic study on non-stationary regime was done to calculate the activation energy by Thermal Gravimetric Analysis evaluating thermochemical and thermocatalytic process of sludge, the latter being in the presence of USY zeolite. As expected, the activation energy evaluated by the mathematical model "Model-free kinetics" applying techniques isoconversionais was lowest for the catalytic tests (57.9 to 108.9 kJ/mol in the range of biomass conversion of 40 to 80%). The pyrolytic plant at a laboratory scale reactor consists of a rotating cylinder whose length is 100 cm with capable of processing up to 1 kg biomass/h. In the process of pyrolysis thermochemical were studied following parameters: temperature of reaction (500 to 600 ° C), flow rate of carrier gas (50 to 200 mL/min), frequency of rotation of centrifugation for condensation of bio-oil (20 to 30 Hz) and flow of biomass (4 and 22 g/min). Products obtained during the process (pyrolytic liquid, coal and gas) were characterized by classical and instrumental analytical techniques. The maximum yield of liquid pyrolytic was approximately 10.5% obtained in the conditions of temperature of 500 °C, centrifugation speed of 20 Hz, an inert gas flow of 200 mL/min and feeding of biomass 22 g/min. The highest yield obtained for the gas phase was 23.3% for the temperature of 600 °C, flow rate of 200 mL/min inert, frequency of rotation of the column of vapor condensation 30 Hz and flow of biomass of 22 g/min. The non-oxygenated aliphatic hydrocarbons were found in greater proportion in the bio-oil (55%) followed by aliphatic oxygenated (27%). The bio-oil had the following characteristics: pH 6.81, density between 1.05 and 1.09 g/mL, viscosity between 2.5 and 3.1 cSt and highest heating value between 16.91 and 17.85 MJ/ kg. The main components in the gas phase were: H2, CO, CO2 and CH4. Hydrogen was the main constituent of the gas mixture, with a yield of about 46.2% for a temperature of 600 ° C. Among the hydrocarbons formed, methane was found in higher yield (16.6%) for the temperature 520 oC. The solid phase obtained showed a high ash content (70%) due to the abundant presence of metals in coal, in particular iron, which was also present in bio-oil with a rate of 0.068% in the test performed at a temperature of 500 oC.
Resumo:
The clay swelling is today one of the major problems during the well drilling. Nearly 50% of clays that constitute shale expand easily in the presence of water molecules. During the drilling of a geological formation containing swelling clays, when is feasible the use of water base fluids, it is necessary to apply clay inhibitors. This avoids the incorporation of the cutting to the drilling fluid which is responsible for the wall swelling and crumbling. The aim of this work was to evaluate the synergistic behavior that occurs when swelling clay inhibitors are associated to NaCl and KCl salts. Three swelling clay inhibitors samples, INIB A, INIB B and INIB C, were analyzed. Each inhibitor was characterized by the amount of chlorides and active matter content. For the water-clay interaction evaluation in the presence of various fluids, it was used the Capillary Suction Timer (CST, Fann) and Linear Swell Meter (LSM 2000, Fann). For better interpretation of results, a Design of Experiments (DOE, Umetrics MODDE 7.0 TM) through Result Surface Methodology (RSM) was employed, taking into account the type, the swelling inhibitors concentration and the contact time with the clay. The results showed different efficiencies among the inhibitors employed, and the salt-inhibitors mixtures were more efficient than those products alone. However, for field operation, other parameters should be taking into account, as operational cost, environmental requests and time of application for each product
Resumo:
Chondroitin sulfate (CS) is a naturally glycosaminoglycan found in the extracellular matrix of connective tissues and it may be extracted and purified those tissues. CS is involved in various biological functions, which may be related to the having structural variability, despite the simplicity of the linear chain structure from this molecule. Researches in biotechnology and pharmaceutical field with wastes from aquaculture has been developed in Brazil. In recent decades, tilapia (Oreochromis niloticus), native fish from Africa, has been one of the most cultivated species in various regions of the world, including Brazil. The tilapia farming is a cost-effective activity, however, it generates large amount of wastes that are discarded by producers. It is understood that waste from tilapia can be used in research as a source of molecules with important biotechnological applications, which also helps in reducing environmental impacts and promote the development of an ecofriendly activity. Thus, nile tilapia viscera were subjected to proteolysis, then the glycosaminoglycans were complexed with ion exchange resin (Lewatit), it was fractionated with increasing volumes of acetone and purified by ion exchange chromatography DEAE-Sephacel. Further, the fraction was analyzed by agarose gel electrophoresis and nuclear magnetic resonance (NMR). The electrophoretic profile of the compound together the analysis of 1H NMR spectra and the HSQC correlation allow to affirm that the compound corresponds to a molecule like chondroitin sulfate. MTT assay was used to assess cell viability in the presence of CS tilapia isolated and showed that the compound is not cytotoxic to normal cells such as cells from the mouse embryo fibroblast (3T3). Then, this compound was tested for the ability to reduce the influx of leukocytes in model of acute peritonitis (in vivo) induced by sodium thioglycolate. In this context, it was done total and differential leukocytes counting in the blood and peritoneal fluid collected respectively from vena cava and the peritoneal cavity of the animals subjected to the experiment. The chondroitin sulfate for the first time isolated from tilapia (CST ) was able to reduce the migration of leukocytes to the peritoneal cavity of inflamed mice until 80.4 per cent at a dose 10µg/kg. The results also show that there was a significant reduction (p<0.001) of the population of polymorphonuclear leukocytes from peritoneal cavity in the three tested doses (0.1µg/kg; 1µg/kg and 10µg/kg) when it was compared to the positive control (just thioglycolate). Therefore, since the CST structure and mechanism of action has been completely elucidated, this compound may have potential for therapeutic use in inflammatory diseases