3 resultados para COUPLED-WAVE ANALYSIS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In general, the materials used as substrates in the project of microstrip antennas are: isotropic, anisotropic dielectrics and ferrimagnetic materials (magnetic anisotropy). The use of ferrimagnetic materials as substrates in microstrip patch antennas has been concentrated on the analysis of antennas with circular and rectangular patches. However, a new class of materials, called metamaterials, has been currently the focus of a great deal of interest. These materials exhibit bianisotropic characteristics, with permittivity and permeability tensors. The main objective of this work is to develop a theoretical and numerical analysis for the radiation characteristics of annular ring microstrip antennas, using ferrites and metamaterials as substrates. The full wave analysis is performed in the Hankel transform domain through the application of the Hertz vector potentials. Considering the definition of the Hertz potentials and imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency, radiation pattern, return loss, and antenna bandwidth as a function of the annular ring physical parameters, for different configurations and substrates. The theoretical analysis was developed for annular ring microstrip antennas on a double ferrimagnetic/isotropic dielectric substrate or metamaterial/isotropic dielectric substrate. Also, the analysis for annular ring microstrip antennas on a single ferrimagnetic or metamaterial layer and for suspended antennas can be performed as particular cases

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a theoretical and numerical analysis for the radiation characteristics of rectangular microstrip antenna using metamaterial substrate. The full wave analysis is performed in the Fourier transform domain through the application of the Transverse Transmission Line - TTL method. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. The general equations for the electromagnetic fields of the antenna are developed using the Transverse Transmission Line - TTL method. Imposing the boundary conditions, the dyadic Green s function components are obtained relating the surface current density components at the plane of the patch to the electric field tangential components. Then, Galerkin s method is used to obtain a system of matrix equations, whose solution gives the antenna resonant frequency. From this modeling, it is possible to obtain numerical results for the resonant frequency and return loss for different configurations and substrates

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work consists on the theoretical and numerical analysis of some properties of circular microstrip patch antennas on isotropic and uniaxial anisotropic substrates. For this purpose, a full wave analysis is performed, using Hertz Vector Potentials method in the Hankel Transform domain. In the numerical analysis, the moment method is also used in order to determine some characteristics of the antenna, such as: resonant frequency and radiation pattern. The definition of Hertz potentials in the Hankel domain is used in association with Maxwell´s equations and the boundary conditions of the structures to obtain the Green´s functions, relating the components of the current density on the patch and the tangential electric field components. Then, the Galerkin method is used to generate a matrix equation whose nontrivial solution is the complex resonant frequency of the structure. In the analysis, a microstrip antenna with only one isotropic dielectric layer is initially considered. For this structure, the effect of using superconductor patches is also analyzed. An analysis of a circular microstrip antenna on an uniaxial anisotropic dielectric layer is performed, using the Hertz vector potentials oriented along the optical axis of the material, that is perpendicular to the microstrip ground plane. Afterwards, the circular microstrip antenna using two uniaxial anisotropic dielectric layers is investigated, considering the particular case in which the inferior layer is filled by air. In this study, numerical results for resonant frequency and radiation pattern for circular microstrip antennas on isotropic and uniaxial anisotropic substrates are presented and compared with measured and calculated results found in the literature