770 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::GEOCIENCIAS::GEOFISICA
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The area between São Bento do Norte and Macau cities, located in the northern coast of the Rio Grande do Norte State is submitted to intense and constant processes of littoral and aeolian transport, causing erosion, alterations in the sediments balance and modifications in the shoreline. Beyond these natural factors, the human interference is huge in the surroundings, composed by sensitive places, due to the existence of the Guamaré Petroliferous Pole, RN, the greater terrestrial oil producing in Brazil, besides the activities of the salt companies and shrimp farms. This socioeconomic-environmental context justifies the elaboration of strategies of environmental monitoring of that coastal area. In the environmental monitoring of coastal strips, submitted to human impacts, the use of multi-sources and multitemporal data integrated through a Spatio- Temporal Database that allows the multiuser friendly access. The objective was to use the potential of the computational systems as important tools the managers of environmental monitoring. The stored data in the form of a virtual library aid in making decisions from the related results and presented in different formats. This procedure enlarges the use of the data in the preventive attendance, in the planning of future actions and in the definition of new lines of researches on the area, in a multiscale approach. Another activity of this Thesis consisted on the development of a computational system to automate the process to elaborate Oil-Spill Environmental Sensitivity Maps, based on the temporal variations that some coastal ecosystems present in the sensibility to the oil. The maps generated in this way, based on the methodology proposed by the Ministério do Meio Ambiente, supply more updated information about the behavior of the ecosystem, as a support to the operations in case of oil spill. Some parameters, such as the hydrodynamic data, the declivity of the beach face, types of resources in risk (environmental, economical, human or cultural) and use and occupation of the area are some of the essential basic information in the elaboration of the sensitivity maps, which suffer temporal alterations.In this way, the two computational systems developed are considered support systems to the decision, because they provide operational subsidies to the environmental monitoring of the coastal areas, considering the transformations in the behavior of coastal elements resulting from temporal changes related the human and/or natural interference of the environment
Resumo:
The Borborema Province (BP) is a geologic domain located in Northeastern Brazil. The BP is limited at the south by the São Francisco craton, at the west by the Parnaíba basin, and both at the north and east by coastal sedimentary basins. Nonetheless the BP surface geology is well known, several key aspects of its evolution are still open, notably: i)its tectonic compartmentalization established after the Brasiliano orogenesis, ii) the architecture of its cretaceous continental margin, iii) the elastic properties of its lithosphere, and iv) the causes of magmatism and uplifting which occurred in the Cenozoic. In this thesis, a regional coverage of geophysical data (elevation, gravity, magnetic, geoid height, and surface wave global tomography) were integrated with surface geologic information aiming to attain a better understanding of the above questions. In the Riacho do Pontal belt and in the western sector of the Sergipano belt, the neoproterozoic suture of the collision of the Sul domain of the BP with the Sanfranciscana plate (SFP) is correlated with an expressive dipolar gravity anomaly. The positive lobule of this anomaly is due to the BP lower continental crust uplifting whilst the negative lobule is due to the supracrustal nappes overthrusting the SFP. In the eastern sector of the Sergipano belt, this dipolar gravity anomaly does not exist. However the suture still can be identified at the southern sector of the Marancó complex arc, alongside of the Porto da Folha shear zone, where the SFP N-S geophysical alignments are truncated. The boundary associated to the collision of the Ceará domain of the BP with the West African craton is also correlated with a dipolar gravity anomaly. The positive lobule of this anomaly coincides with the Sobral-Pedro II shear zone whilst the negative lobule is associated with the Santa Quitéria magmatic arc. Judging by their geophysical signatures, the major BP internal boundaries are: i)the western sector of the Pernambuco shear zone and the eastern continuation of this shear zone as the Congo shear zone, ii) the Patos shear zone, and iii) the Jaguaribe shear zone and its southwestern continuation as the Tatajuba shear zone. These boundaries divide the BP in five tectonic domains in the geophysical criteria: Sul, Transversal, Rio Grande do Norte, Ceará, and Médio Coreaú. The Sul domain is characterized by geophysical signatures associated with the BP and SFP collision. The fact that Congo shear zone is now proposed as part of the Transversal domain boundary implies an important change in the original definition of this domain. The Rio Grande do Norte domain presents a highly magnetized crust resulted from the superposition of precambrian and phanerozoic events. The Ceará domain is divided by the Senador Pompeu shear zone in two subdomains: the eastern one corresponds to the Orós-Jaguaribe belt and the western one to the Ceará-Central subdomain. The latter subdomain exhibits a positive ENE-W SW gravity anomaly which was associated to a crustal discontinuity. This discontinuity would have acted as a rampart against to the N-S Brasiliano orogenic nappes. The Médio Coreaú domain also presents a dipolar gravity anomaly. Its positive lobule is due to granulitic rocks whereas the negative one is caused by supracrustal rocks. The boundary between Médio Coreaú and Ceará domains can be traced below the Parnaíba basin sediments by its geophysical signature. The joint analysis of free air anomalies, free air admittances, and effective elastic thickness estimates (Te) revealed that the Brazilian East and Equatorial continental margins have quite different elastic properties. In the first one 10 km < Te < 20 km whereas in the second one Te ≤ 10 km. The weakness of the Equatorial margin lithosphere was caused by the cenozoic magmatism. The BP continental margin presents segmentations; some of them have inheritance from precambrian structures and domains. The segmentations conform markedly with some sedimentary basin features which are below described from south to north. The limit between Sergipe and Alagoas subbasins coincides with the suture between BP and SFP. Te estimates indicates concordantly that in Sergipe subbasin Te is around 20 km while Alagoas subbasin has Te around 10 km, thus revealing that the lithosphere in the Sergipe subbasin has a greater rigidity than the lithosphere in the Alagoas subbasin. Additionally inside the crust beneath Sergipe subbasin occurs a very dense body (underplating or crustal heritage?) which is not present in the crust beneath Alagoas subbasin. The continental margin of the Pernambuco basin (15 < Te < 25 km) presents a very distinct free air edge effect displaying two anomalies. This fact indicates the existence in the Pernambuco plateau of a relatively thick crust. In the Paraíba basin the free air edge effect is quite uniform, Te ≈ 15 km, and the lower crust is abnormally dense probably due to its alteration by a magmatic underplating in the Cenozoic. The Potiguar basin segmentation in three parts was corroborated by the Te estimates: in the Potiguar rift Te ≅ 5 km, in the Aracati platform Te ≅ 25 km, and in the Touros platform Te ≅ 10 km. The observed weakness of the lithosphere in the Potiguar rift segment is due to the high heat flux while the relatively high strength of the lithosphere in the Touros platform may be due to the existence of an archaean crust. The Ceará basin, in the region of Mundaú and Icaraí subbasins, presents a quite uniform free air edge effect and Te ranges from 10 to 15 km. The analysis of the Bouguer admittance revealed that isostasy in BP can be explained with an isostatic model where combined surface and buried loadings are present. The estimated ratio of the buried loading relative to the surface loading is equal to 15. In addition, the lower crust in BP is abnormally dense. These affirmations are particularly adequate to the northern portion of BP where adherence of the observed data to the isostatic model is quite good. Using the same above described isostatic model to calculate the coherence function, it was obtained that a single Te estimate for the entire BP must be lower than 60 km; in addition, the BP north portion has Te around 20 km. Using the conventional elastic flexural model to isostasy, an inversion of crust thickness was performed. It was identified two regions in BP where the crust is thickened: one below the Borborema plateau (associated to an uplifting in the Cenozoic) and the other one in the Ceará domain beneath the Santa Quitéria magmatic arc (a residue associated to the Brasiliano orogenesis). On the other hand, along the Cariri-Potiguar trend, the crust is thinned due to an aborted rifting in the Cretaceous. Based on the interpretation of free air anomalies, it was inferred the existence of a large magmatism in the oceanic crust surrounding the BP, in contrast with the incipient magmatism in the continent as shown by surface geology. In BP a quite important positive geoid anomaly exists. This anomaly is spatially correlated with the Borborema plateau and the Macaú-Queimadas volcanic lineament. The integrated interpretation of geoid height anomaly data, global shear velocity model, and geologic data allow to propose that and Edge Driven Convection (EDC) may have caused the Cenozoic magmatism. The EDC is an instability that presumably occurs at the boundary between thick stable lithosphere and oceanic thin lithosphere. In the BP lithosphere, the EDC mechanism would have dragged the cold lithospheric mantle into the hot asthenospheric mantle thus causing a positive density contrast that would have generated the main component of the geoid height anomaly. In addition, the compatibility of the gravity data with the isostatic model, where combined surface and buried loadings are present, together with the temporal correlation between the Cenozoic magmatism and the Borborema plateau uplifting allow to propose that this uplifting would have been caused by the buoyancy effect of a crustal root generated by a magmatic underplating in the Cenozoic
Resumo:
The lower course of Piranhas-Assu river, located in the north coast of Rio Grande do Norte, Brazil, arouses a keen interest as a study field, once it concentrates, besides petroleum and gas exploration, activities related to shrimp culture, salt and horticulture, factors that also deserve special attention. Thus, the awareness of the study field environmental stage demands studies from researchers and discernment from society, as a way of understanding the inter-relation between environment and men. Therefore, this work attempts at understanding and studying the dynamics of land use in the lower course of Piranhas-Assu river, through a multitemporal analysis of present and past, accomplishing future projections through simulation models. The work is divided in stages that include the research, analysis, interpretation of results, and the generation of simulation models, to analyze the landscape tendencies, making possible to identify indicators which cause such changes in the lower course of the river. From Geographical Database, the necessary exploratory analyses were accomplished to the following items: land use evolution, natural and environmental vulnerability, multiple geodiversity indexes, and preparation of the data to be used in the simulation model. Later, the construction of the landscape simulation model was conducted. Sequentially, simulations of future sceneries were accomplished through the execution of the model in a specific software environment. Last, the analyses of landscape tendencies in the study field were carried out. The lower course of Piranhas-Assu River didn't show any intense dynamics in landscape changing, once in the period taken into account (from 1988 to 2004) class stability proved to be superior to its transformations. Activities related to agriculture and livestock are the ones that influence, mostly, the landscape dynamics. The production of sea shrimp and petroleum also infers in the landscape, although in smaller proportion. INCRA s public policies excessively determined the dynamics of the landscape in the lower course of Piranhas-Assu River, RN. In respect to its natural vulnerability, the lower course of Piranhas-Assu River, RN, features more vulnerable than stable areas. The landscape simulation, in the first taken period (2004-2009), indicated considerable increases and decreases of antropic activities, if compared to its sequent periods (2009-2014, 2014-2019 and 2019-2024). The simulation, in a wider analysis, showed that the determining factors for the space mobility of antropic activities, in the focused area, are related to the pre-existence of communities with agricultural capability and to the existence of access routes and drainage. Considering the area that features fixed and mobile dunes, located in Porto do Mangue district, we recommend its conversion into a conservation area
Resumo:
This thesis encompasses the integration of geological, geophysical, and seismological data in the east part of the Potiguar basin, northeastern Brazil. The northeastern region is located in South American passive margin, which exhibits important areas that present neotectonic activity. The definition of the chronology of events, geometry of structures generated by these events, and definition of which structures have been reactivated is a necessary task in the region. The aims of this thesis are the following: (1) to identify the geometry and kinematics of neotectonic faults in the east part of the Potiguar basin; (2) to date the tectonic events related to these structures and related them to paleoseismicity in the region; (3) to present evolutional models that could explain evolution of Neogene structures; (4) and to investigate the origin of the reactivation process, mainly the type of related structure associated with faulting. The main type of data used comprised structural field data, well and resistivity data, remote sensing imagery, chronology of sediments, morphotectonic analysis, x-ray analysis, seismological and aeromagnetic data. Paleostress analysis indicates that at least two tectonic stress fields occurred in the study area: NSoriented compression and EW-oriented extension from the late Campanian to the early Miocene and EW-oriented compression and NS-oriented extension from the early Miocene to the Holocene. These stress fields reactivated NE-SW- and NW-SE-trending faults. Both set of faults exhibit right-lateral strike-slip kinematics, associated with a minor normal component. It was possible to determine the en echelon geometry of the Samambaia fault, which is ~63 km long, 13 km deep, presents NE-SW trend and strong dip to NW. Sedimentfilled faults in granite rocks yielded Optically Stimulated Luminescence (OSL) and Single-Aliquot Regeneration (SAR) ages at 8.000 - 9.000, 11.000 - 15.000, 16.000 - 24.000, 37.000 - 45.500, 53.609 - 67.959 e 83.000 - 84.000 yr BP. The analysis of the ductile fabric in the João Câmara area indicate that the regional foliation is NE-SW-oriented (032o - 042o), which coincides with the orientation of the epicenters and Si-rich veins. The collective evidence points to reactivation of preexisting structures. Paleoseismological data suggest paleoseismic activity much higher than the one indicated by the short historical and instrumental record
Resumo:
The northern coast of Rio Grande do Norte State is characterized by strong changes in coastal morphology, caused by various geological and climatic factors. In this region are installed the main socio-economic activities of the State, highlighting the oil industry, which exerts much of its activities in the coastal area studied. Erosion is a constant problem in this region because it affects the entire local populace to the destruction of houses and trade, rendering tourism, affecting the livelihood activities and industrial activities. The greatest risk is related to environmental damage that can be caused by the oil spill in this region. To understand what determines the changes in coastal morphology this Doctoral Thesis is proposed to identify the factors at local, regional and even global corroborate coastal dynamics to this coast in question. For this study, used several different products and tools for interpreting the conditions of the erosive effect that dominates the whole northern coast of the State, in an attempt to quantify and describe the causes and effects that affect the entire coastal zone monitored. The development of activities is built into the projects Rede 05 PETROMAR (CTPETRO-FINEP/PETROBRAS/CNPq), PETRORISCO, HIDROSEMA, PETROMAR e Rede 05/04 POTMAR (FNDCT/CTPETROFINEP/ CNPq), in the activities of multidisciplinary and inter-features in issues involving environmental monitoring and oil activity
Resumo:
The study of Brazilian sedimentary basins concentrates on their rift phase, whereas the Post-rift phase has been considered a tectonic quiescent period. The post-rift sequence of the Potiguar Basin, in the far northeastern Brazil, was once considered little deformed, however several studies have shown how that it was affected by major fault systems. The purpose of this thesis is to characterize the post-rift tectonic. The specific objectives are: to characterize the Neogene and Quaternary sedimentary units that outcrop of the Potiguar Basin; to show how the NW-SEtrending Afonso Bezerra Faults System deformed outcrop rocks in the Basin; to describe soft-sediment deformation in gravels of the Quaternary Alluvial Deposits from Açu River. Facies analyses, grain-size studies, luminescence dating, remote sensing, structural mapping, shallow geophysics (georadar), paleostress and petrography were carried out. The structural mapping and the georadar sections indicated that the Carnaubais and Afonso Bezerra fault systems formed fractures, silicified and non-silicified faults or deformation bands, affecting mainly the Açu, Jandaíra and Barreiras formations. The petrographic data indicate that the strong silicification resulted in a sealant character of the faults. Paleostress analysis indicates that two stress fields affected the Basin: the first presented N-S-trending compression, occurred from the Neocretaceous to the Miocene; the second stress field presents E-W-trending compression, acts from the Miocene to the present. It was verified once the Afonso Bezerra System Faults was reactivated in periods post-Campanian and affects all post-rift lithostratigraphic units of Potiguar Basin, including Quaternary sedimentary covers. The study about soft-sediment deformation structures indicates that they are similar in morphology and size to modern examples of seismically-induced deformation strutures in coarse sediments. TL and OSL ages indicate that sediment deposition and associated soft-sediment deformation occurred at least six times from ~352 Ka to ~9 Ka. Finally these studies demonstrate how recent is tectonics in the Basin Potiguar
Resumo:
In Fazenda Belém oil field (Potiguar Basin, Ceará State, Brazil) occur frequently sinkholes and sudden terrain collapses associated to an unconsolidated sedimentary cap covering the Jandaíra karst. This research was carried out in order to understand the mechanisms of generation of these collapses. The main tool used was Ground Penetrating Radar (GPR). This work is developed twofold: one aspect concerns methodology improvements in GPR data processing whilst another aspect concerns the geological study of the Jandaíra karst. This second aspect was strongly supported both by the analysis of outcropping karst structures (in another regions of Potiguar Basin) and by the interpretation of radargrams from the subsurface karst in Fazenda Belém. It was designed and tested an adequate flux to process GPR data which was adapted from an usual flux to process seismic data. The changes were introduced to take into account important differences between GPR and Reflection Seismic methods, in particular: poor coupling between source and ground, mixed phase of the wavelet, low signal-to-noise ratio, monochannel acquisition, and high influence of wave propagation effects, notably dispersion. High frequency components of the GPR pulse suffer more pronounced effects of attenuation than low frequency components resulting in resolution losses in radargrams. In Fazenda Belém, there is a stronger need of an suitable flux to process GPR data because both the presence of a very high level of aerial events and the complexity of the imaged subsurface karst structures. The key point of the processing flux was an improvement in the correction of the attenuation effects on the GPR pulse based on their influence on the amplitude and phase spectra of GPR signals. In low and moderate losses dielectric media the propagated signal suffers significant changes only in its amplitude spectrum; that is, the phase spectrum of the propagated signal remains practically unaltered for the usual travel time ranges. Based on this fact, it is shown using real data that the judicious application of the well known tools of time gain and spectral balancing can efficiently correct the attenuation effects. The proposed approach can be applied in heterogeneous media and it does not require the precise knowledge of the attenuation parameters of the media. As an additional benefit, the judicious application of spectral balancing promotes a partial deconvolution of the data without changing its phase. In other words, the spectral balancing acts in a similar way to a zero phase deconvolution. In GPR data the resolution increase obtained with spectral balancing is greater than those obtained with spike and predictive deconvolutions. The evolution of the Jandaíra karst in Potiguar Basin is associated to at least three events of subaerial exposition of the carbonatic plataform during the Turonian, Santonian, and Campanian. In Fazenda Belém region, during the mid Miocene, the Jandaíra karst was covered by continental siliciclastic sediments. These sediments partially filled the void space associated to the dissolution structures and fractures. Therefore, the development of the karst in this region was attenuated in comparison to other places in Potiguar Basin where this karst is exposed. In Fazenda Belém, the generation of sinkholes and terrain collapses are controlled mainly by: (i) the presence of an unconsolidated sedimentary cap which is thick enough to cover completely the karst but with sediment volume lower than the available space associated to the dissolution structures in the karst; (ii) the existence of important structural of SW-NE and NW-SE alignments which promote a localized increase in the hydraulic connectivity allowing the channeling of underground water, thus facilitating the carbonatic dissolution; and (iii) the existence of a hydraulic barrier to the groundwater flow, associated to the Açu-4 Unity. The terrain collapse mechanisms in Fazenda Belém occur according to the following temporal evolution. The meteoric water infiltrates through the unconsolidated sedimentary cap and promotes its remobilization to the void space associated with the dissolution structures in Jandaíra Formation. This remobilization is initiated at the base of the sedimentary cap where the flow increases its abrasion due to a change from laminar to turbulent flow regime when the underground water flow reaches the open karst structures. The remobilized sediments progressively fill from bottom to top the void karst space. So, the void space is continuously migrated upwards ultimately reaching the surface and causing the sudden observed terrain collapses. This phenomenon is particularly active during the raining season, when the water table that normally is located in the karst may be temporarily located in the unconsolidated sedimentary cap
Resumo:
Numerous studies have indicated that the Potiguar Basin is affected by Cenozoic tectonics. The reactivation of Cretaceous fault systems affect the post-rift units, witch include Neogene and overlying Quaternary sediments. In this context, the objectives of this thesis are the followings: (1) to characterize the effects of post-rift tectonics in the morphology of Apodi Mossoró-river valley located in the central portion of the Potiguar, (2) to characterize the drainage of the Apodi Mossoró river valley and investigate the behavior of their channels across active faults, and (3) to propose a geologic-geomorphological evolutionary model for the study area. This study used a geological and geomorphological mapping of the central part of the basin, with emphasis on the Quaternary record, luminescence dating of sediments, and geoelectric profiles of the area. The results reveal by maps of structural lineaments and drainage channels of the rivers form valleys that are affected by faults and folds. In Apodi-Mossoró valley, anomalies of channel morphology are associated with the deformation of the post-rift basin. These anomalies show the reactivation of major fault systems in the Potiguar Basin in Cenozoic. On a regional scale, can be seen through the vertical electric profiles that the Cenozoic tectonics is responsible for the elevation of a macro dome NE-SE-trending 70-km long and 50km wide and up to 270 above sea level. In this sector, the vertical electric profiles data show that the contact between the Cretaceous and Neogene rise more than 100m. This Is an important feature of inversion data obtained in this work showed that the deposits that cover the macro dome (Serra do Mel) have ages of 119 ka to 43 ka. In the river valley and surrounding areas Apodi-Mossoró ages vary between 319 ka and 2.7 ka. From these data it was possible to establish the correct geochronological posiconamento paleodepósitos of distinguishing them from the fluvial deposits of the Neogene (Barreiras Formation)
Resumo:
The Northeast relief was described by the Pediplanation Model. This action discards the theoretical basis of post-Cretaceous tectonic evolution of the landscape. Through this model the Massif Pereiro - MP, Borborema Province, was established as part of the Tablelands Area Residual Sertanejos. The present work aims to establish the post- Cretaceous morphotectonic evolution of the MP by geomorphological and geological mapping using Geographic Information System, Remote Sensing and dating of sediments by Single Aliquot Regenerative-dose (SAR). The MP is contained in the core semi-arid, annual precipitation of 600-800 mm / year. The MP is NE-SW, is limited by Shear Zone Jaguaribe (ZCJ) and Portalegre Shear Zone (ZCPa), the same attitude, and crossed by several other shear zones. These shear zones show evidence of brittle Cenozoic reactivation, mostly as normal faults and shallow crustal level. The Quaternary sedimentation around the MP focuses on fault escarpments in a general pattern cascade, where ages decrease from the summits of the steep foothills. The ages of 51 sediment samples indicate a correlation with global climate following pulses: Last Interestadial-UI, the Last Glacial Maximum - LGM and the transition Pleistocene / Holocene, while the latter focus on 18 of 51 samples dated. This study also finds evidence of a new quaternary basin, here called Merejo Basin. Through these results it is concluded that no evidence of post-Cretaceous tectonic evolution of morphological MP, as their retreat along the fault scarps, invariably following the trend of the shear zones. The erosion of cliffs in large time scale is controlled by weakness zones generated by faults on the other hand the erosion of cliffs in short time, with the formation of deposits and colluvial horizons pedogenizados, has climate control. It was also found that in the study area there is a preponderance of past and current tectonic erosion processes on the morphological evolution
Resumo:
This thesis presents and discusses the results of the various seismic areas in the State of Pernambuco, with the aim of having a vision of regional seismicity and its causes. To the papers published in journals were added two new original works submitted to international journals, dealing with seismic areas located in the counties of São Caetano, Cupira, and Agrestina. All seismic areas mentioned in this thesis are located on the Pernambuco Lineament and its surroundings (both in branches or single faults within 40 km of it). The Pernambuco Lineament is a Neoproterozoic shear zone of continental-scale that deformed the Borborema Province, and presents as branches, shear zones with NE-SW direction. The new submitted papers are from the analysis of data collected by three local networks of stations that operated in the following areas: network SO07 (seismicity in the district of Santa Luzia - São Caetano, 2007), network BM10 (data from seismic areas of Serra Verde ( Cupira) and Barra do Chata (Agrestina), in 2010), network SO10 (seismicity near the urban center of São Caetano in 2010). These data were used for determining the hypocenters and focal mechanisms in order to discuss the relationship between the seismicity and geological features of the area. The new mechanisms obtained, as well as the previously published allowed the determination of the direction of the average stress in the region. The direction of stress in the region involving the various seismic areas, now or previously studied, is quite stable and approximate EW direction (SHmax). The correlation between seismicity and geological features is observed on the lineament and north of it. In the south (Cupira and Agrestina), in seismic areas nearby shear zones NE-SW, there is no correlation and seismogenic EW normal faults are active and its motion is compatible with regional stresses. It is probable that these active faults are more recent than the Neoproterozoic, probably of the Cretaceous period, when the last great movement of the Pernambuco Lineament occurred
Resumo:
This paper presents models of parameters of Sea Surface Layer (SSL), such as chlorophyll-a, sea surface temperature (SST), Primary Productivity (PP) and Total Suspended Matter (TSM) for the region adjacent to the continental shelf of Rio Grande do Norte (RN), Brazil. Concentrations of these parameters measured in situ were compared in time quasi-synchronous with images AQUA-MODIS between the years 2003 to 2011. Determination coefficients between samples in situ and bands reflectance sensor AQUA-MODIS were representative. From that, concentrations of SSL parameters were acquired for the continental shelf of the RN (eastern and northern) analyzing the geographic distribution of variation of these parameters between the years 2009-2012. Geographical and seasonal variations mainly influenced by global climate phenomena such as El Niño and La Niña, were found through the analysis of AQUA-MODIS images by Principal Components Analysis (PCA). Images show qualitatively the variance and availability of TSM in the regions, as well as their relationship with coastal erosion hotspots, monitored along the coast of the RN. In one of the areas identified as being of limited availability of TSM, we developed a methodology for assessment and evaluation of Digital Elevation Models (DEM) of beach surfaces (emerged and submerged sections) from the integration of topographic and bathymetric data measured in situ and accurately georeferenced compatible to studies of geomorphology and coastal dynamics of short duration. The methodology consisted of surveys with GNSS positioning operated in cinematic relative mode involved in topographic and bathymetric executed in relation to the stations of the geodetic network of the study area, which provided geodetic link to the Brazilian Geodetic System (GBS), univocal , fixed, and relatively stable over time. In this study Ponta Negra Beach, Natal / RN, was identified as a region with low variance and availability of MPS in the region off, as characterized by intense human occupation and intense coastal erosion in recent decades, which presents potential of the proposed methodology for accuracy and productivity, and the progress achieved in relation to the classical methods of surveying beach profiles
Resumo:
This thesis presents the results of application of SWAN Simulating WAves Nearshore numerical model, OF third generation, which simulates the propagation and dissipation of energy from sea waves, on the north continental shelf at Rio Grande do Norte, to determine the wave climate, calibrate and validate the model, and assess their potential and limitations for the region of interest. After validation of the wave climate, the results were integrated with information from the submarine relief, and plant morphology of beaches and barrier islands systems. On the second phase, the objective was to analyze the evolution of the wave and its interaction with the shallow seabed, from three transverse profiles orientation from N to S, distributed according to the parallel longitudinal, X = 774000-W, 783000-W e 800000-W. Subsequently, it was were extracted the values of directional waves and winds through all the months between november 2010 to november 2012, to analyze the impact of these forces on the movement area, and then understand the behavior of the morphological variations according to temporal year variability. Based on the results of modeling and its integration with correlated data, and planimetric variations of Soledade and Minhoto beach systems and Ponta do Tubarão and Barra do Fernandes barrier islands systems, it was obtained the following conclusions: SWAN could reproduce and determine the wave climate on the north continental shelf at RN, the results show a similar trend for the measurements of temporal variations of significant height (HS, m) and the mean wave period (Tmed, s); however, the results of parametric statistics were low for the estimates of the maximum values in most of the analyzed periods compared data of PT 1 and PT 2 (measurement points), with alternation of significant wave heights, at times overrated with occasional overlap of swell episodes. By analyzing the spatial distribution of the wave climate and its interaction with the underwater compartmentalization, it was concluded that there is interaction of wave propagation with the seafloor, showing change in significant heights whenever it interacts with the seafloor features (beachrocks, symmetric and asymmetric longitudinal dunes, paleochannel, among others) in the regions of outer, middle and inner shelf. And finally, it is concluded that the study of the stability areas allows identifications of the most unstable regions, confirming that the greatest range of variation indicates greater instability and consequent sensitivity to hydrodynamic processes operating in the coastal region, with positive or negative variation, especially at Ponta do Tubarão and Barra do Fernandes barrier islands systems, where they are more susceptible to waves impacts, as evidenced in retreat of the shoreline
Resumo:
The studied area is geologically located in the Northern Domain of the Borborema Province (Northeast Brazil), limited to the south by the Patos shear zone. Terranes of the Jaguaribeano system are dominant, flanked by the Piranhas (E and S sides) and Central Ceará (NE side) terranes. Its basement comprises gneiss -migmatite terrains of Paleoproterozoic to Archean age (2.6 to 1.9 Ga old), overprinted by neoproterozoic to cambrian tectonotherma l events. Narrow supracrustal belts ( schist belts) display a 1.6 to 1.8 Ga age, as shown by whole - rock Rb-Sr and zircon U-Pb and Pb/Pb dates in acid metavolcanics which dominate in the lower section of these sequences, and in coeval metaplutonics (granitic augen gneisses). From the stratigraphic point of view, three Staterian belts are recognized: 1. Orós Belt - made up by the Orós Group, subdivided in the Santarém (predominantly pure to impure quartzites, micaschists and metacarbonates) and Campo Alegre (metandesites, metabasalts, metarhyolites and metarhyodacites, interlayered with metatuffs and metasediments) formations, and by the Serra do Deserto Magmatic Suite (granitic augen gneisses). 2. Jaguaribe Belt - its lithostratigrahic-lithodemic framework is similar to the one of the Orós Belt, however with a greater expression of the volcano -plutonic components (Campo Alegre Formation and Serra do Deserto Magmatic Suite). The Peixe Gordo Sequence, separately described, is also related to this belt and contain s metasedimentary, metavolcanic (with subordinated volcanoclastics) and metaplutonic units. The first one correlated to the Orós Group and the latter the Serra do Deserto Magmatic Suite. 3. Western Potiguar Belt - represented by the Serra de São José Gro up, subdivided in the Catolezinho (biotite -amphibole gneisses with intercalations of metacarbonates, calcsilicate rocks, amphibolites and quartzite beds to the top) and Minhuins (quartzites, micaschists, metaconglomerates, calcsilicate rocks, acid to the b asic metavolcanics and metatuffs) formations. Its late Paleoproterozoic (Staterian) age was established by a Pb/Pb date on zircons from a granitic orthogneiss of the Catolezinho Formation. The petrographic characteristics and sedimentary structures of the Santarém Formation of the Orós Group point to deltaic to shallow marine depositional systems, overlain by deep water deposits (turbidites). The geodynamic setting of this region encompassed a large depositional basin, probably extending to the east of the Portalegre shear zone and west of the Senador Pompeu shear zone, with possible equivalents in the Jucurutu Formation of the Seridó Belt and in the Ceará Group of central Ceará. The Arneiróz Belt, west Ceará, displays some stratigraphic features and granito ids geochemically akin to the ones of the Orós Belt. The evolutionary setting started with an extensional phase which was more active in the eastern part of this domain (Western Potiguar and part of the Jaguaribe belts), where the rudite and psamite sedime ntation relates to a fluviatile rift environment which evolved to a prograding deltaic system to the west (Orós Group). The basaltic andesitic and rhyolitic volcanics were associated to this extensional phase. During this magmatic event, acid magmas also crystallized at plutonic depths. The Orós Group illustrates the environmental conditions in the western part of this domain. Later on, after a large time gap (1.6 to 1.1 Ga), the region was subjected to an extensional deformational episode marked by 900 Ma old (Sm-Nd data) basic rocks, possibly in connection with the deposition of the Cachoeirinha Group south of the Patos shear zone. In the 800 to 500 Ma age interval, the region was affected by important deformational and metamorphic events coupled with in trusion of granitic rocks of variable size (dykes to batholiths), related to the Brasiliano/Pan -African geotectonic cycle. These events produced structural blocks which differentiate, one from the other, according to the importance of anatectic mobilizatio n, proportion of high-grade supracrustals and the amount of neoproterozoic -cambrian granitoid intrusions. On this basis, a large portion of the Jaguaretama Block/Terrane is relatively well preserved from this late overprint. The border belts of the Jagua retama Block (Western Potiguar and Arneiroz) display kyanite-bearing (medium pressure) mineral associations, while in the inner part of the block there is a north-south metamorphic zoning marked by staurolite or sillimanite peak metamorphic conditions. Regarding the deformations of the Staterian supracrustal rocks, second and third phases were the most important, diagnosed as having developed in a progressive tectonic process. In the general, more vigorous conditions of PT are related to the interval tardi - phase 2 early-phase 3, whose radiometric ages and regional structuring indicators places it in the Brasiliano/Pan-African Cycle. In the Staterian geodynamic setting of Brazilian Platform , these sequences are correlated to the lower Espinhaço Supergroup (p.ex., Rio dos Remédios and Paraguaçu groups, a paleproterozoic rift system in the São Francisco Craton), the Araí and Serra da Mesa groups (north of Goiás, in the so -called Goiás Central Massif), and the Uatumã Group (in the Amazonian Craton). Granitic ( augen gneisses) plutonics are also known from these areas, as for example the A-type granites intrusive in the Araí and Serra da Mesa groups, dated at 1.77 Ga. Gravimetric and geological data place the limits of the Jaguaribeano System (terranes) along the Senador Pompeu Shear Zone (western border) and the Portalegre- Farias Brito shear zone (eastern and southern). However, the same data area not conclusive as regards the interpretation of those structures as suture of the terrane docking process. The main features of those shear zones and of involved lothological associations, appear to favour an intracontinental transpressional -transcurrent regime, during Neoproterozoic-Cambrian times, marking discontinuities along which different crustal blocks were laterally dispersed. Inside of this orogenic system and according to the magnetic data (total field map), the most important terrane boundary appears to be the Jaguaribe shear zone. The geochronological data, on some tectonostratigraphic associations (partly represented by the Ceará and Jucurutu groups), still at a preliminary level, besides the lack of granitic zonation and other petrotectonic criteria, do not allow to propose tectonic terrane assembly diagrams for the studied area
Resumo:
This project was developed as a partnership between the Laboratory of Stratigraphical Analyses of the Geology Department of UFRN and the company Millennium Inorganic Chemicals Mineração Ltda. This company is located in the north end of the paraiban coast, in the municipal district of Mataraca. Millennium has as main prospected product, heavy minerals as ilmenita, rutilo and zircon presents in the sands of the dunes. These dunes are predominantly inactive, and overlap the superior portion of Barreiras Formation rocks. The mining happens with the use of a dredge that is emerged at an artificial lake on the dunes. This dredge removes sand dunes of the bottom lake (after it disassembles of the lake borders with water jets) and directs for the concentration plant, through piping where the minerals are then separate. The present work consisted in the acquisition external geometries of the dunes, where in the end a 3D Static Model could be set up of these sedimentary deposits with emphasis in the behavior of the structural top of Barreiras Formation rocks (inferior limit of the deposit). The knowledge of this surface is important in the phase of the plowing planning for the company, because a calculation mistake can do with that the dredge works too close of this limit, taking the risk that fragments can cause obstruction in the dredge generating a financial damage so much in the equipment repair as for the stopped days production. During the field stages (accomplished in 2006 and 2007) topographical techniques risings were used with Total Station and Geodesic GPS as well as shallow geophysical acquisitions with GPR (Ground Penetrating Radar). It was acquired almost 10,4km of topography and 10km of profiles GPR. The Geodesic GPS was used for the data geopositioning and topographical rising of a traverse line with 630m of extension in the stage of 2007. The GPR was shown a reliable method, ecologically clean, fast acquisition and with a low cost in relation to traditional methods as surveys. The main advantage of this equipment is obtain a continuous information to superior surface Barreiras Formation rocks. The static models 3D were elaborated starting from the obtained data being used two specific softwares for visualization 3D: GoCAD 2.0.8 and Datamine. The visualization 3D allows a better understanding of the Barreiras surface behavior as well as it makes possible the execution of several types of measurements, favoring like calculations and allowing that procedures used for mineral extraction is used with larger safety
Resumo:
The research area is located on the county of Tibau do Sul, in the east coast of Rio Grande do Norte State, about 80km south of the capital Natal. The tourism represents the main income activity and Pipa beach is the most visited beach in the city, annually receives a large influx of domestic and foreign tourists. Some recent studies have reported the occurrence of coastal erosion in this littoral, being the main objective of the research, analyze the existing coastal erosion, through two methodologies, the geoenvironmental mapping and beach morphodynamics. The geoenvironmental mapping was done from oblique aerial photographs and field visits, which sought to carry out first the geomorphological mapping, with the purpose of analyzing features that suggest susceptible areas to erosion, as areas without protection of natural dunes, marine terraces, or sandstones (beach-rocks and ferruginous sandstones), areas with the presence of gullies and stretches where the sea-cliffs were in direct contact with the action of the sea, representing the beginning of the beach profile. In the morphodynamic study sought to carry out the survey of the physical and morphological characteristics, the analysis of sediment grain of the beaches and finally the analysis of the morphodynamic parameters to generate a table of risk to erosion by sector of the beach. The morphodynamic parameters were defined by the methodology proposed by Short (2006), in which considers different patterns of dynamism on beaches with characteristics favorable and unfavorable to erosive profiles. The maps indicated different levels of risk to the segments of the beaches analyzed, suggesting risk to erosion low and low to moderate only in areas north and northwest of the beaches of Madeiro and Curral, and levels of moderate and high risk sectors in the south and southeast of these beaches . The beach of Pipa showed moderate levels of risk and moderate to high at the ends and high risk to erosion in the central portion. The study of the coastal environment, its morphological evolution, and areas with problems of erosion, are of fundamental importance to assist coastal management policies, giving grants for planning activities undertaken in these regions