25 resultados para CEMENTO PORTLAND

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the major current challenges for oilwell companies is the extraction of oil from evaporitic zones, also known as pre-salt basins. Deep reservoirs are found under thick salt layers formed from the evaporation of sea water. Salt layers seal the flow of oil from underneath rock formations, which store hydrocarbons and increase the probability of success in oil and gas exploration. Oilwells are cemented using Portland-based slurries to promote mechanical stability and zonal isolation. For pre-salt oilwells, NaCl must be added to saturate the cement slurries, however, the presence of salt in the composition of slurries affects their overall behavior. Therefore, the objective of the present study was to evaluate the effect of the addition of 5 to 25% NaCl on selected properties of Portland-based slurries. A series of tests were carried out to assess the rheological behavior, thickening time, free water and ultrassonic compressive strength. In addition, the slurries were also characterized by thermal analysis, X ray diffraction and scanning electron microscopy. The results showed that the addition of NaCl affected the thickening time of the slurries. NaCl contents up to 10% shortened the thickening time of the slurries. On the other hand, concentrations in excess of 20% not only extended the thickening time, but also reduced the strength of hardened slurries. The addition of NaCl resulted in the formation of a different crystalline phase called Friedel´s salt, where free chlorine is bonded to tricalcium aluminate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the great challenges at present time related with the materials area concerns of products and processes for use in petroleum industry, more precisely related to the Pre-salt area. Progresses were reached in the last years allowing the drilling of the salt layer, with the time reduction for drilling and larger success at the end. For the oil wells companies the preponderant factor is the technology, however, in spite of the progress, a series of challenges is still susceptible to solutions and one of them refers to the slurries preparation for cementing in those areas. Inside of this context, this study had for objective to analyze the influence of the salts NaCl, KCl, CaSO4 and MgSO4 in strength and chemical structure of the hydrated products. As methodology, they were prepared and analyzed cement slurries with varied concentrations of these salts that are commonly found in the saline formations. The salts concentrations used in formulations of the slurries were of 5%, 15% and 30%. The slurries were formulated with specific weight of 15,8 lb / gal and the cement used was Class G. Strength tests were accomplished in samples cured by 24 hours and 28 days. Also were realized crystallographic characterization (XRD) and morphologic (SEM). In agreement with the presented results, it is observed that the largest resistance values are attributed to the slurries with concentration of 15%. There was reduction of the strength values of the slurries formulated with concentration of 30%. Through the characterization microstructural it was possible to note the salts influence in the main cement hydrated products

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sharp consumption of natural resources by the construction industry has motivated numerous studies concerning the application of waste to replace partially or fully, some materials, such as aggregates, thereby reducing the environmental impact caused by the extraction of sand and crushing process. The application of stone dust from crushing process arising as an aggregate for the production of Portland cement concrete is a viable alternative in view of the high cost of natural sands, in addition to the environmental damage which causes its operation to the environment. The stone dust has reduced cost compared to natural sand because it is produced in the beds of their own quarries, which are usually located close to major urban centers. This study examined the feasibility of using stone dust from the crushing of rock gneisses in the state of Bahia, replacing natural quartz sand. In the development of scientific study was conducted to characterize physical and chemical raw materials applied and molded cylindrical specimens , using as reference values Fck 20, Fck 25 and Fck 30 MPa ( resistance characteristic of the concrete after 28 days) in following compositions stone powder: 10%, 30%, 50 %, 100% and 100% with additive. The specimens were cured and subjected to the tests of compressive strength and water absorption, then the samples were subjected to the tests of X-ray diffraction and scanning electron microscopy. The results obtained showed that the composition with 10% stone powder showed the best results regarding the physical and mechanical tests performed, confirming the reduction in compressive strength and increased water uptake increased as the content of the powder stone in the concrete composition

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cementation operation consists in an extremely important work for the phases of perforation and completion of oil wells, causing a great impact on the well productivity. Several problems can occur with the cement during the primary cementation, as well as throughout the productive period. The corrective operations are frequent, but they are expensive and demands production time. Besides the direct cost, prejudices from the interruption of oil and gas production till the implementation of a corrective operation must be also taken into account. The purpose of this work is the development of an alternative cement paste constituted of Portland cement and porcelainized stoneware residue produced by ceramic industry in order to achieve characteristics as low permeability, high tenacity, and high mechanical resistance, capable of supporting various operations as production or oil wells recuperation. Four different concentration measures of hydrated paste were evaluated: a reference paste, and three additional ones with ceramic residue in concentrations of the order of 10%, 20% and 30% in relation to cement dough. High resistance and low permeability were found in high concentration of residues, as well as it was proved the pozolanic reactivity of the residue in relation to Portland cement, which was characterized through x-ray and thermogravimetry assays. It was evident the decrease of calcium hydroxide content, once it was substituted by formation of new hydrated products as it was added ceramic residue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Compound Portland cements are commonly used in construction, among them stand out the CPII-Z, CPII-F and CPIV. These types of cement have limited application on oil well cementing, having its compositional characteristics focused specifically to construction, as cement for use in oil wells has greater complexity and properties covering the specific needs for each well to be coated. For operations of oil wells cementing are used Portland cements designed specifically for this purpose. The American Petroleum Institute (API) classifies cements into classes designated by letters A to J. In the petroleum industry, often it is used Class G cement, which is cement that meets all requirements needed for cement from classes A to E. According to the scenario described above, this paper aims to present a credible alternative to apply the compound cements in the oil industry due to the large availability of this cement in relation to oil well cements. The cements were micro structurally characterized by XRF, XRD and SEM tests, both in its anhydrous and hydrated state. Later technological tests were conducted to determine the limits set by the NBR 9831. Among the compound cements studied, the CPII-Z showed satisfactory properties for use in primary and secondary operations of oil wells up to 1200 meters cementing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increase in cement consumption, it has quickly become one of the inputs most consumed by mankind over the last century. This has caused an increase in CO2 emissions, as cement production releases large quantities of this gas into the atmosphere. Adding this fact to the growing consciousness of environmental preservation, it has led to a search for alternatives to cement to complement its derivatives, in the form of waste materials like the ashes. This research aimed to analyze the properties of mortars in fresh and hardened state with partial replacement of Portland cement by residual algaroba wood ash (CRLA) potteries produced by the state of Rio Grande do Norte. The CRLA was collected and sieved, where part of it was ground and characterized in comparison with that just sifted, being characterized according to its chemical composition, grain size, fineness, density, bulk density and index of pozzolanic activity. It was found that the wood ash does not act as pozzolan, and grinding it has not changed its characteristics compared to those just sifted, not justifying its use. Two traces were adopted for this research: 1:3 (cement: fine sand) and 1:2:8 (cement: hydrated lime: medium sand); both in volume, using as materials the CRLA just sifted, CP II F-32 Portland cement, CH-I hydrated lime, river sand and water from the local utility. For each trace were adopted six percentages of partial replacement of cement for wood ash: 0% (control) 5%, 7%, 10%, 12% and 15%. In the fresh state, the mortars were tested towards their consistency index and mass density. In the hardened state, they were tested towards their tensile strength in bending, compressive strength and tensile adhesion strength, and its mass density in the hardened state. The mortar was also analyzed by scanning electron microscopy and X-ray diffraction. Furthermore, it was classified according to NBR 13281 (2005). The results showed that up to a content of 5% substitution and for both traces, the residual algaroba wood ash can replace Portland cement without compromising the mortars microstructure and its fresh and hardened state

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From the 70`s, with the publication of the Manifesto for Environment UN Conference, held in Stockholm, in Sweden (1972), defend and improve the environment became part of our daily lives. Thus, several studies have emerged in several segments in order to reuse the waste. Some examples of waste incorporated in portland cement concrete are: rice husk ash, bagasse ash of cane sugar, powder-stone, microsilica, tire rubber, among others. This research used the residue of the mining industry Scheelite, to evaluate the incorporation of the residue composition of Portland cement concrete, replacing the natural sand. The percentage of residue were incorporated from 0% to 100%, with a variation of 10%, 11 being produced concrete mix in the ratio 1:2:3:0.60, by mass. We evaluated the following characteristics of concrete: slump test, compressive strength, tensile strength by diametral compression, water absorption, porosity and density, based on the ABNT, through tests performed in the Laboratory of Civil Construction, UFRN. The trace with the addition of 60% scheelite residue was obtained which better performance. Therefore, the use of the waste from the production of Scheelite is feasible due to the durability parameters (water absorption and porosity), sustainability, and the good results of the resistance of the concrete

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O desenvolvimento das grandes cidades tem gerado um dos maiores desafios ambientais enfrentados na atualidade, que é a gestão eficaz de resíduos sólidos. A grande variedade e quantidade dos resíduos produzidos diariamente, tem tornado a destinação ecologicamente correta e sustentável destes materiais cada vez mais difícil. Dentre os vários resíduos produzidos diariamente destacam-se os lodos oriundos de estações de tratamento de esgotos, denominados de lodos de esgoto, cuja destinação final segura tem sido discutida mundialmente em diversos estudos, tendo em vista que a tendência de geração deste tipo de resíduo tende a crescer com o aumento do saneamento das cidades. Uma forma amplamente difundida nos países desenvolvidos para destinação dos lodos de esgoto é a incineração destes materiais para posterior envio das cinzas geradas neste processo a aterros sanitários. Porém, tem-se estudado formas alternativas de disposição, destacando-se a utilização destas cinzas como adição mineral em concretos e argamassas de cimento Portland. Sabe-se que o desempenho de resíduos de incineração como adição mineral em matrizes cimentícias, depende em grande parte da capacidade de atuação destes materiais como elementos pozolânicos ou como fileres, podendo estas características serem influenciadas pela temperatura de queima ao qual estes resíduos foram submetidos. Neste sentido, verificou-se com esta pesquisa a influência da temperatura empregada na queima dos lodos sépticos no índice de atividade pozolânica (IAP) das cinzas geradas como resíduo deste processo, aqui denominadas de cinzas de lodo séptico (CLS), sendo em seguida, avaliadas as implicações técnicas e microestruturais da utilização deste resíduo em teores de 10%, 20% e 30% como adição mineral em concretos de cimento Portland. Os resultados obtidos demonstraram não haver alterações significativas no IAP das CLS em decorrência da temperatura utilizada durante o processo de queima dos lodos de esgoto. Além disso, verificou-se que embora a utilização das CLS tenham provocado diminuição da trabalhabilidade dos concretos para todos os teores de incorporação, estas melhoraram a resistência mecânica à compressão, o índice de vazios, a absorção de água e o comportamento microestrutural dos concretos contendo 10% e 20% de resíduo

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of sewage sludge as a raw material falls within the waste recycling key in the current process model environmental sustainability .Waste recycling has been consolidated as a sustainable environmentally sound technical solution, and. Despite showing very variable composition and characteristics, sewage sludge, can be considered as a residue with a high recycling potential in the building sector. In this paper the feasibility of using sewage sludge ash was studied in addition to Portland cement mortar in 1:3 mass considered the standard dash. This gray additions were studied in proportions of 5%, 10 %, 15 %, 20 %, 25% and 30% by mass of cement. The methodology was focused on the characterization of materials by physical, chemical , mechanical , environmental and morphological followed by the production of mortar tests ,and finalized by the characterization tests of mortar in the fresh state, through the consistency index, content of entrained air, bulk density and water retention, and in the hardened state by bulk density, water absorption by capillarity capillarity coefficient, compressive strength, tensile strength in bending ,tensile bond strength and microstructural analysis for percentages of 0 to 20%. After comparing with the standard mortar mortars with addition of ash, it is concluded that the ash of sewage sludge did not impair the integrity and properties of mortars with addition, including increasing resistance to compression and tension, being 20% more indicated percentage. Thus, it becomes feasible the addition of sewage sludge ash in Portland cement mortar for the trait studied

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The generation of industrial wastes has been increased more and more in recent decades, motivating studies about a correct sustainable allocation and that also represents advantages for their generators. In this context, are included two companies of cleaning products niche, located in São José do Mipibu/RN, that produces industrial sludge at a sewage treatment plant, and that is the main approach of this research. Given this, it was studied the incorporation potentiality of this sludge as a mineral addition in cement matrix for concrete production due it high capacity of wastes immobilization inside this material, which are subsequently used in the company for making precast articles. Were added different sludge concentrations (5, 10, 15 and 20%) in a common trait (1: 2: 3), and evaluated their techniques and microstructural implications via workability test in fresh state and compressive strength, full porosity and scanning electron microscopy (SEM) in the hardened state. The results demonstrated the feasibility of the process both from a technical and environmental view as economical. All concretes produced with residue showed an increase of workability given the nature of the waste that had surfactants substances capable of adsorbing tiny particles of air into the batter. However, for all concentrations were obtained lower compressive resistances than standard concrete, with a reduction of 39% for samples with 20% of sludge. This are attributed mainly to an increase of porosity in the transition zone of these material, resulting from increased formation of ettringite at the detriment to the formation of other compounds, but which still allows the use of these for the manufacture of concrete articles with non-structural nature, such as precast floor. In addition, the water absorption and void ratio increased slightly for all samples, except the concrete with 20% of waste that has a reduction for the last parameter. Given this context, the recommended maximum level is 20%, constituting a significant proportion and able to allocate sustainably all waste generated in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work it is assessed the performance of Portland cement-based mortar to the grouting of type II ceramic plates with the addition of unusable tire rubber powder. It is presented a bibliographical review about the subject in which is done the theoretical and methodological foundation of the whole investigative process. The analyzed universe comprises a sample of mortar to the grouting of conventional ceramic plates type II (reference sample) and five more samples to the grouting of ceramic plates type II, which were made up of the addition of unusable tire rubber powder in the respective proportion (in mass) of 4%, 8%, 12%, 16% and 20%. These mortar samples were subject to the trials of determination of the consistency index (Brazilian Standard NBR 13276:2005), water retention ( Brazilian Standard NBR 14992 Attachment B:2003), permeability in 240 minutes (Brazilian Standard NBR 14992 Attachment G:2003), absorption of water by immersion (Brazilian Standard NBR 9781:2013), resistance to compression (Brazilian Standard NBR14992 Attachment D: 2003), resistance to traction in the flexion (Brazilian Standard NBR 13279:2005), resistance of traction adherence (Brazilian Standard NBR 14081 part 4:2012) and hardened mass density (Brazilian Standard NBR 13280: 2005). It has been found out from the analyzes of the results in the trial the following situation: the reference mortar used met the established requirements in the norms of specifications corresponding to only six from the eight parameters assessed in the research; the mortar with addition of 4,0% of tire rubber powder met the established requirements corresponding to only the resistance to compression and the resistance of adherence to traction. Thus, the other kinds of mortar with addition of 8,0 %, 12,0 %, 16,0 % and 20,0 % of tire rubber powder met the requirements of specifications corresponding to only the resistance to compression and the resistance of adherence to traction. This result concludes that the adding of tire rubber powder does not grant improvement to the mortar of type II grouting to the laying of ceramic plates.