3 resultados para CANDIDATE GENES

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of complex diseases such as preeclampsia are determined by both environmental and genetic factors, but there is also interaction among these factors. Preeclampsia is a pregnancy-specific disorder characterized by de-novo hypertension and proteinuria after 20th week of gestation. There is a broad spectrum of clinical presentations related to hypertensive disorders of pregnancy (HDP) that can range from mild preeclampsia to eclampsia (seizures) or HELLP syndrome (Hemolysis, Elevation of Liver enzymes, Low Platelets). Those clinical outcomes might be linked to different pathological mechanisms. Our work aims to identify factors (i.e. genes and environmental) associated with the HDP’s clinical spectrum. Using a case-control approach, we selected a total of 1498 pregnant women for epidemiological and genetic studies, encompassing 755 normotensive (control); 518 preeclampsia; 84 eclampsia; and 141 HELLP. Women were genotyped for 18 SNPs across 5 candidate genes (FLT1, ACVR2A, ERAP1, ERAP2 and LNPEP). For the environmental factors, we found maternal age, parity status and pre-gestational body mass index as important risk factors associated with disease. Genes were associated in a phenotype-specific manner: ACVR2A with early preeclampsia (rs1424954, p=0.002); FLT1 with HELLP syndrome (rs9513095, p=0.003); and ERAP1 with eclampsia (rs30187, p=0.03). Our results suggest that different genetic mechanisms along with specific environmental factors might determine the clinical spectrum of HDP. In addition, phenotype refinement seems to be an essential step in the search for complex disease genes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Chromobacterium violaceum is a β-proteobacterium Gram-negative widely found in tropical and subtropical regions, whose genome was sequenced in 2003 showing great metabolic versatility and biotechnological and pharmaceutical potential. Given the large number of ORFs related to iron metabolism described in the genome of C. violaceum, the importance of this metal for various biological processes and due to lack of data about the consequences of excess of iron in free-living organisms, it is important to study the response mechanism of this bacterium in a culture filled with iron. Previous work showed that C. violaceum is resistant to high concentrations of this metal, but has not yet been described the mechanism which is used to this survival. Thus, to elucidate the response of C. violaceum cultured in high concentrations of iron and expecting to obtain candidate genes for use in bioremediation processes, this study used a shotgun proteomics approach and systems biology to assess the response of C. violaceum grown in the presence and absence of 9 mM of iron. The analysis identified 531 proteins, being 71 exclusively expressed by the bacteria grown in the presence of the metal and 100 just in the control condition. The increase in expression of proteins related to the TCA cycle possibly represents a metabolic reprogramming of the bacteria caused by high concentration of iron in the medium. Moreover, we observed an increase in the activity assay of superoxide dismutase and catalase as well as in Total Antioxidant Activity assay, suggesting that the metal is inducing oxidative stress in C. violaceum that increases the levels of violacein and antioxidant enzymes to better adapt to the emerging conditions. Are also part of the adaptive response changes in expression of proteins related to transport, including iron, as well as an increased expression of proteins related to chemotaxis response, which would lead the bacteria to change the direction of its movement away from the metal. Systems Biology results, also suggest a metabolic reprogramming with mechanisms coordinated by bottleneck proteins involved in transcription (GreA), energy metabolism (Rpe and TpiA) and methylation (AhcY)