3 resultados para C-BAND
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Cytogenetics analyses in fish are important because they compose a private group among the vertebrates, occupying a central position in the animal evolution. The Perciforms Order, dominant in the marine and freshwater environment, it constitutes a model potentially useful in the genetic evaluation of populations, as well as in the understanding of its evolutionary processes. In spite of this, cytogenetics studies in this great group is scarce, above all for the inhabitants of sandy bottom and pelagics habits. The present work proposed to contribute for the cytogenetic characterization of nine species of fish marine of sandy bottom of the coast of Rio Grande do Norte (Brazil), identifying the evolutionary patterns related to the karyotype in these species and the existence of filogenetics affinities between them and other Perciformes. The animals were collected in the beaches of the Redinha, Ponta Negra and Búzios (Coast of Rio Grande do Norte) and in Saint Peter and Saint Paul Archipelago. Later on they were submitted to the cytogenetics technical that consist of mitotic estimulation, obtaining of mitotics chromosomes, proceeded by techniques of conventional coloration (Giemsa) and chromosomic bands (Ag-RONs and C band). Diploid number and fundamental number equal to 48 were observed in most of the species: Menticirrhus americanus, Ophioscion punctatissimus, Pareques acuminatus (Sciaenidae); Chloroscombrus chrysurus (Carangidae); Echeneis sp. 2 (Echeneidae); Archosargus probatocephalus (Sparidae) and Orthopristis ruber (Haemulidae). Trachinotus goodei (NF=52) (Carangidae) and Echeneis sp. 1 (Echeneidae) (NF=54) presented variation in NF, staying constant a diploid number equal to 48. RONs was situated in pericentromeric position in whole the scianids, and in the species Echeneis sp. 2 (22° pair), O. ruber and A. probatocephalus (1° pair), coinciding with great heterocromatics blocks in M. americanus (1° pair), P. acuminatus (2° pairl) and O. ruber (1° pair). RONs was also located in the telomeric area of the short arm of the 5° and 11° acrocentrics pairs in T. goodei, 4° and 19° pairs of C. chrysurus, 1° pair (sm) of Echeneis sp. 1. The C band detected centromeric blocks in most of the chromosomes of the species of Sciaenidae, Carangidae and Echeneidae, with great blocks in A. probatocephalus (4° pair). Heterocromatic blocks in telomeric areas in submetacentrics of Echeneis sp. 1, and pericentromerics in M. americanus (1° and 8° pairs), O. punctatissimus (1° pair) and P. acuminatus (2° pair) were also observed. It is noticed a marked conservatism cromossomic in the species of the family Scianidae and Haemulidae in what says respect to the number of acrocentrics chromosomes and the location of RONs. Even so it is outstanding the presence of heterocromatinization events during the karyotypic evolution of this family. Already in the families Sparidae and Carangidae, the obtained results reaffirm examples of small variations structural resultants of inversion and translocation Robertsonian, as important mechanisms of diversification karyotipical, as well as a pattern numerical evolutionary conserved, also observed in representatives of Echeneidae of Atlantic in relation to Pacific. The presence of RONs multiple, observed in the species T. goodei and C. chrysurus seems to represent a character derived in the family Carangidae. The results for the species O. ruber and A. probatocephalus suggest the presence of possible geographical or climatic barriers among populations of NE of Brazil in relationship the one of the SE
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.
Resumo:
The objective of this study was to characterize the structural-geophysical expression of the Transbrasiliano Lineament (TBL) in the east-central portion of the Parnaíba Basin. The TBL corresponds to a major Neoproterozoic NE-trending shear zone related to the Brasiliano orogenic cycle, with dextral strike-slip kinematics, underlying (but also laterally exposed in the NE and SW basin edges) the sedimentary section of the Parnaíba Basin. In this study, the interpretation of gravity and magnetic anomaly maps is consistent with the TBL kinematics, the signature of the geophysical anomalies corresponding to the high (plastic behaviour) and subsequent declining temperature (ductile to brittle behaviour) stages during Brasiliano and late Brasiliano times. The pattern of residual gravity anomalies is compatible with an S-C dextral pair shaping the geological bodies of an heterogeneous basement, such as slices of gneisses and granulites (positive anomalies), granitic and low-medium grade metasedimentary rocks (negative anomalies). Such anomalies curvilinear trends, ranging from NNE (interpreted as S surfaces) to NE (C surfaces), correspond to flattening surfaces (S), while the NE rectilinear trend must represent a C band. The narrower magnetic anomalies also display NNE to NE (S surfaces) trends and should correspond to similar (although narrower and more discontinuous) sources in the equivalent anomaly patterns. Pre-Silurian pull-apart style grabens may contribute to the NE negative gravimetric anomalies, although this interpretation demands control by seismic data analysis. On the other hand, the curvilinear anomalies associated to contractional trends are incompatible with their interpretation as pre-Silurian graben, in both maps. In the (reduced to the pole) magnetic anomalies map, most of these are again associated to low-temperature shear zones (C planes) and faults, juxtaposing distinct blocks in terms of magnetic properties, or eventually filled with basic bodies. It is also possible that some isolated magnetic anomalies correspond to igneous bodies of late-Brasiliano or Mesozoic age. The basement late discontinuities pattern can be interpreted in analogy to the Riedel fractures model, with steep dipping surfaces and a sub-horizontal movement section. This study also explored 2D gravity modeling controlled by the interpretation of a dip seismic line as regards to the Transbrasiliano Lineament. The rock section equivalent to the Jaibaras Group occupying a graben structure (as identified in the seismic line) corresponds to a discrete negative anomaly superimposed to a gravimetric high, once again indicating a stronger influence of older crystalline basement rocks as gravimetric sources, mainly reflecting the heterogeneities and anisotropies generated at high temperature conditions and their subsequent cooling along the TBL, during the Brasiliano cycle.