28 resultados para Boys of Color
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The effluents released by the textile industry have high concentrations of alkali, carbohydrates, proteins, in addition to colors containing heavy metals. Therefore, a filter was prepared aiming primarily to the removal of color. In order to prepare this filter, rice hulls and diatomite were used, which have in their structure, basically amorphous hydrated silica. The silica exists in three crystalline forms: quartz, tridymite and cristobalite. In accordance with the above considerations, this study was divided into two stages; the first corresponds to the preparation of the filter and the second to carry out the tests in the effluent/filter in order to verify the efficiency of the color removal. First, the raw material was subjected to a chemical analysis and XRD, and then the diatomite was mixed, via humid, with a planetarium windmill with 20 %, 40 %, 60 % and 80 % of rice husk ash. To the mixture, 5 % carboxymethylcellulose (CMC) was added as a binder at room temperature. The samples were uniaxially compacted into metallic matrix of 0.3 x 0.1 cm² of area at a pressure of 167 MPa by means of hydraulic press and then sintered at temperatures of 1,000 °C, 1,200 °C and 1,400 °C for 1 h and submitted to granulometry test using laser, linear retraction, water absorption, apparent porosity and resistance to bending, DTA, TMA and XRD. To examine the pore structure of the samples scanning electron microscope (SEM) was used. Also tests were carried out in a mercury porosimeter to verify the average size of the pores and real density of the samples. In the second stage, samples of the effluent were collected from a local industry, whose name will be preserved, located in Igapó, in the State of Rio Grande do Norte - RN. The effluent was first pretreated before filtration and then subjected to a treatment of flotation. The effluent was then characterized before and after filtration, with parameters of color, turbidity, suspended solids, pH, chemical and biochemical oxygen demand (COD and BOD). Thus, through the XRD analysis the formation of cristobalite α in all samples was observed. The best average size of pore was found to be 1.75 μm with 61.04 % apparent porosity, thus obtaining an average 97.9 % color removal and 99.8 % removal of suspended solid
Resumo:
Textile production has been considered as an activity of high environmental impact due to the generation of large volumes of waste water with high load of organic compounds and strongly colored effluents, toxic and difficult biodegradability. This thesis deals with obtaining porous alumina ceramic membranes for filtration of textile effluent in the removal of contaminants, mainly color and turbidity. Two types of alumina with different particle sizes as a basis for the preparation of formulation for mass production of ceramic samples and membranes. The technological properties of the samples were evaluated after using sintering conditions: 1,350ºC-2H, 1,450ºC-30M, 1,450ºC-2H, 1,475ºC-30M and 1,475ºC-2H. The sintered samples were characterized by XRD, XRF, AG, TG, DSC, DL, AA, MEA, RL, MRF-3P, SEM and Intrusion Porosimetry by Mercury. After the characterization, a standard membrane was selected with their respective sintering condition for the filterability tests. The effluent was provided by a local Textile Industry and characterized at the entry and exit of the treatment plant. A statistical analysis was used to study the effluent using the following parameters: pH, temperature, EC, SS, SD, oil and grease, turbidity, COD, DO, total phosphorus, chlorides, phenols, metals and fecal coliform. The filtered effluent was evaluated by using the same parameters. These results demonstrate that the feasibility of the use of porous alumina ceramic membranes for removing contaminants from textile effluent with improved average pore size of 0.4 micrometre (distribution range varying from 0,025 to 2.0 micrometre), with total porosity of 29.66%, and average percentages of color removal efficiency of 89.02%, 92.49% of SS, turbidity of 94.55%, metals 2.70% (manganese) to 71.52% (iron) according to each metal and COD removal of 72.80%
Resumo:
The epilepsy is one of the neurological disorders more common in the pediatric period, and which interferes significantly in the psycho and social life of children and teenagers. The objective of this study was analyzing the practice of sedentary practices, physicals, traditional infant fun and games of children and teenagers with and without epilepsy. The study was prospective, transversal descriptive, done with 60 children and teenagers with epilepsy (Epileptic Group - EG) patients from Pediatric Neurology Clinic of the Centre Integrated Health Lineu Araújo and 60 children and teenagers without epilepsy (Control Group - CG) students from municipal public school, both of the two groups paired with the same age (age group 7 to 14 years) of both the genders (female = 25/41,6% and male = 35/58,3%) of the Teresina city Piauí. It was done two pattern questionnaires, one applied to children and teenagers of the EG and CG to identify the sedentary activities, physical and traditional infant games and other to the parents/responsible of the EG about the clinical and demographic information. The results permitted the elaboration of two manuscripts: a) the first one titled The Practice of Sedentary and Physical Activities of Children and Teenagers with Epilepsy which showed significant difference in the sedentary activities of playing with car toy (p=0,021) to the EG and reading to the CG (p=0,001); in the physical activities the school physical education (p=0,001) and riding a bike (p=0,014) to the CG; b) the second one The Practice of Infant Games and Fun the children and teenagers with and without Epilepsy in this one the playing with marble presented significant difference (p=0,016) to the CG, despite the girls of the two groups don t do this activity. Observing the distribution of frequencies, it was verified that in the play catch-up and hide-and-seek and burn the EG plays more than the CG both in female and male gender. The girls of the EG play less skip, 60 while the boys of the two groups don t play. Elastic jump the girls of the two groups play in a same frequency and the boys don t participate of this fun. The seizures were found to occur during: soccer (23,3%); hide-and-seek (6,6%) and running (3,3%). In the sedentary activities, seizures were reported to occur: resting and watching TV (18,3%), sleeping (36,0%); sitting (13,3%) and lying down (11,7%). Our results showed that the epileptic group and the controls group engage in the same activities, although the epileptic group participates less than the controls. Although the EG had presented a bigger percentage of generalized attacks, they don t occur during the practice of formal physical activities. The research was developed by a multidisciplinary team, and this contributed a lot to the realization of this study
Resumo:
The skin cancer is the most common of all cancers and the increase of its incidence must, in part, caused by the behavior of the people in relation to the exposition to the sun. In Brazil, the non-melanoma skin cancer is the most incident in the majority of the regions. The dermatoscopy and videodermatoscopy are the main types of examinations for the diagnosis of dermatological illnesses of the skin. The field that involves the use of computational tools to help or follow medical diagnosis in dermatological injuries is seen as very recent. Some methods had been proposed for automatic classification of pathology of the skin using images. The present work has the objective to present a new intelligent methodology for analysis and classification of skin cancer images, based on the techniques of digital processing of images for extraction of color characteristics, forms and texture, using Wavelet Packet Transform (WPT) and learning techniques called Support Vector Machine (SVM). The Wavelet Packet Transform is applied for extraction of texture characteristics in the images. The WPT consists of a set of base functions that represents the image in different bands of frequency, each one with distinct resolutions corresponding to each scale. Moreover, the characteristics of color of the injury are also computed that are dependants of a visual context, influenced for the existing colors in its surround, and the attributes of form through the Fourier describers. The Support Vector Machine is used for the classification task, which is based on the minimization principles of the structural risk, coming from the statistical learning theory. The SVM has the objective to construct optimum hyperplanes that represent the separation between classes. The generated hyperplane is determined by a subset of the classes, called support vectors. For the used database in this work, the results had revealed a good performance getting a global rightness of 92,73% for melanoma, and 86% for non-melanoma and benign injuries. The extracted describers and the SVM classifier became a method capable to recognize and to classify the analyzed skin injuries
Resumo:
This study aimed to evaluate the potential use of smectite clays for color removal of textile effluents. The experiments were performed by testing exploratory/planning method factorial and fractional factorial where the factors and levels are predetermined. The smectite clays were used originating from gypsum hub of the region Araripe-PE, and the dye used was Reactive Yellow BF-4G 200%. The smectite clay was collected and transported to the Laboratory of Soil Physics of UFRPE, where it held its preparation through air drying, lump breaking and classification in sieve to then submit it to the adsorption process. Upon completion of 22 complete factorial design it was concluded that the values of (96, 96,5 and 95,8%) corresponding to the percentage of of removal for "in-kind", chemically and thermally activated, respectively and adsorbed amounts of (4,80, 4,61 and 4,74 mg/g) for three clays. Showed that the activation processes used did not increase the adsorption capacity of smectite clay. The kinetic data were best fitted to the Freundlich isotherm, with an exponential distribution of active sites and that shows above the Langmuir equation for adsorption of cations and anions by clays. The kinetic model that best adapted to the results was the pseudosecond order model. In the factorial design study 24-1, at concentrations up to 500 mg/L obtains high percentage of color removal (92,37, 90,92 and 93,40%) and adsorbed amount (230,94, 227,31 and 233,50 mg/g) for three clays. The kinetic data fitted well to Langmuir and Freundlich isotherms. The kinetic model that best adapted to the results was the pseudosecond order model
Resumo:
In recent decades, the generation of solid and liquid waste has increased substantially due to increased industrial activity that is directly linked to economic growth. For that is the most efficient process, it is inevitable generation of such wastes. In the oil industry, a major waste generated in oil exploration is produced water, which due to its complex composition and the large amount generated, has become a challenge, given the restrictions imposed by environmental laws regarding their disposal, making if necessary create alternatives for reuse or treatment in order to reduce the content of contaminants and reduce the harmful effects to the environment. This water can be present in free form or emulsified with the oil, when in the form of an emulsion of oil-water type, it is necessary to use chemicals to promote the separation and flotation is the treatment method which has proved to be more efficient, for it can remove much of the emulsified oil when compared to other methods. In this context, the object of this work was to study the individual effects and interactions of some physicochemical parameters of operations, based on previous work to a flotation cell used in the separation of synthetic emulsion oil / water in order to optimize the efficiency of the separation process through of the 24 full factorial design with center point. The response variables to evaluate the separation efficiency was the percentage of color and turbidity removal. The independent variables were: concentration of de-emulsifying, oil content in water, salinity and pH, these being fixed, minimum and maximum limits. The analysis of variance for the equation of the empirical model, was statistically significant and useful for predictive purposes the separation efficiency of the floater with R2 > 90%. The results showed that the oil content in water and the interaction between the oil content in water and salinity, showed the highest values of the estimated effects among all the factors investigated, having great and positive influence on the separation efficiency. By analyzing the response surface was determined maximum removal efficiency above 90% for both measured for turbidity as a measure of color when in a saline medium (30 g/L), the high oil concentrations (306 ppm) using low concentrations of de-emulsifying (1,1 ppm) and at pH close to neutral
Resumo:
Effluent color resulting from textile dyeing processes has been one of the biggest environmental problems faced by the textile industry. In particular, reactive dyes are highly resistant to conventional wastewater treatment methods. New technologies have been contemplated, some of which have been applied in industrial treatment plants, but color removal has not been efficiently attained. Since microemulsion systems provide good results in heavy metals and proteins extraction processes, their use in dyes extraction has been suggested and investigated. In this work, a real textile wastewater from an exhaustion dyebath has been treated, which contains the following reactive dyes: Procion Yellow H-E4R (CI Reactive Yellow 84), Procion Blue H-ERD (CI Reactive Blue 160) and Procion Red H-E3B (CI Reactive Red 120), in addition to auxiliary compounds normally found in dyeing processes with reactive dyes. The dyes Remazol Blue RR and Remazol Turquoise Blue G (Reactive Blue 21) have also been examined in view of the presence of heavy metals in these molecules. The microemulsion system comprised dodecyl ammonium chloride (as a cationic surfactant), water or wastewater as aqueous phase, kerosene as oil phase, and one of the following alcohols as cosurfactant: isoamyl alcohol, n-butyl alcohol and n-octyl alcohol. The pseudo-ternary diagrams were constructed in order to define Winsor s equilibrium regions. The influence of parameters such as pH, C/S (cosurfactant/surfactant) ratio, distribution coefficient, initial dye concentration, salinity, temperature, phases relative amounts, loading capacity of the microemulsion phase and dye reextraction rate has also been investigated. An experimental planning (Scheffé Net) was used to optimize the extraction process. The removal of color and metals reached levels as high as 99%
Resumo:
Among placental mammals, primates are the only ones to present trichromatic color vision. However, the distribution of trichromacy among primates is not homogeneous: Old World primates shows an uniform trichromacy (with all individuals being trichromats) and New World primates exhibit a color vision polymorphism (with dichromatic males and dichromatic or trichromatic females). Visual ecology studies have investigated which selective pressures may have been responsible for the evolution of trichromacy in primates, diverging from the dichromat standard found in other mammals. Cues associated with foraging and the socio-reproductive status were analyzed, indicating a trichromatic advantage for the rapid detection of visually conspicuous objects against a green background. However, dichromats are characterized by an efficient capture of cryptic and camouflaged stimuli. These advantages regarding phenotype may be responsible for the maintenance of the visual polymorphism in New World primates and for the high incidence of color blindness in humans (standing around 8% in Caucasian men). An important factor that has not yet been experimentally taken into account is the predation risk and its effect on the evolution of trichromacy in primates. To answer this question, we prepared and edited pictures of animals with different coats: oncillas (Leopardus spp.), puma (Puma concolor) and ferret (Galictis cuja). The specimens were taxidermized and the photographs were taken in three different vegetation scenarios (dense forest, cerrado and grassland). The images of the predators were manipulated so that they fit into two categories of stimulus size (small or large). After color calibration and photo editing, these were presented to 40 humans (20 dichromats and 20 trichromats) by a computer program, which presented a set of four photos at a time (one picture containing the taxidermized animal amid the background vegetation and three depicting only the background vegetation) and recorded the response latency and success rate of the subjects. The results show a trichromatic advantage in detecting potential predators. The predator detection was influenced by the background, the predator species, the dimension of the stimulus and the observer s visual phenotype. As humans have a high rate of dyschromatopsias, when compared to wild Catarrhini or human tribal populations, it is possible that the increased rate of dichromats is a result of reduced pressure for rapid predator detection. Since our species came to live in more cohesive groups and resistant to attack by predators, with the advent of agriculture and the formation of villages, it is possible that the lower risk of predation has reduced the selection in favor of trichromats
Resumo:
As social animals, primates use different sensory modalities (acoustic, chemical, tactile and visual) to convey information about social and sexual status to conspecifics. Among these modalities, visual signals are widely used, especially color signals, since primates are the mammalian group that displays the greatest variety of colors in their skin and fur. Studies with Old World primate species suggest that hormonal variations are related to variations in the colors of individual faces and genitals. Therefore, chromatic cues can be used by conspecifics to identify the reproductive condition of an individual. To date, studies with the same approach are unknown for New World species. However, behavioral and physiological studies suggest that different New World primate species seem to perceive reproductive conditions such as the timing of female conception and gestation. Thus, in this study, our aim was to: i) identify whether there are chromatic cues on the skin of female common marmosets, (Callithrix jacchus) that indicate their reproductive condition; ii) define whether this chromatic variation can be perceived by all visual phenotypes known in this species; iii) identify if these chromatic cues can be perceived under different light intensity levels (dim, intermediate and high). For this, we selected 13 female common marmosets in four distinct reproductive conditions: pregnant female preceding parturition, postpartum mothers, noncycling and cycling females. The coloration of the skin in genital and thigh areas in females was measured using a spectrophotometer. Using mathematical models of visual perception, we calculated the values of quantum catch for each photoreceptor type known in this species, the visual opponency channels and color contrast between those body spots. Our results indicate the occurance of chromatic variations in the genital area during the weeks that precede and follow parturition, forming a U-pattern of variation perceptible to males and females in natural conditions of low and high luminosity. Furthermore, we observed distinct color patterns in the genital skin of pregnant and cycling females that indicate their reproductive conditions. Finally, we present evidence of color contrast in noncycling females that is higher than that of pregnant ones. This study suggests that there is a chromatic xii variation in the genital skin of females that can be perceived by conspecifics and that may be related to hormonal changes typical of pregnancy and the ovarian cycle
Resumo:
Polyester fibers are the most used fibers in the world and disperse dyes are used for dyeing these fibers. After dyeing, the colorful dyebath is discharged into effluent streams, which needs a special treatment for color removal. Surfactants interaction with dyes has been evaluated in several studies, including the textile area, specifically in the separation of dyes from textile wastewater. In this work a cationic surfactant was used in a microemulsion system for the extraction of anionic dyes (disperses dyes) from textile wastewater. These microemulsion system was composed by dodecylamonium chloride (surfactant), kerosene oil (organic phase), isoamyl alcohol (cosurfactant) and the wastewater (aqueous phase). The wastewater that results after the dyeing process is acid (pH 5). It was observed that changing the pH value to above 12.8 the extraction could be made, resulting in an aqueous phase with low color level. The Scheffé net experimental design was used for the extraction process optimization, and the obtained results were evaluated using the program "Statistica 7.0". The optimal microemulsion system was composed by 59.8wt.% of wastewater, 30.1wt.% of kerosene, 3.37wt.% of surfactant and 6.73wt.% of cosurfactant, providing extraction upper than 96%. A mix of reactive dyebath (50%) and disperse dyebath (50%) was used as aqueous phase and it presented extraction upper than 98%. The water phase after extraction process can be reused in a new dyeing, being obtained satisfactory results, according to the limits established by textile industry for a good dyeing. Tests were accomplished seeking to study the influence of salt addition and temperature. An experimental design was used for this purpose, which showed that the extraction doesn't depend on those factors. In this way, the removal of color from textile wastewater by microemulsion is a viable technique (that does not depend of external factors such as salinity and temperature), being obtained good extraction results even with in wastewater mixtures
Resumo:
In this work, electrochemical technology was used to treat synthetic wastewater containing Methyl Red (MR) and Blue Novacron (BN) by anodic oxidation using anodes platinum (Pt) and real samples of textile effluents using DDB anodes and platinum (Pt). The removal of color from the galvanostatic electrolysis of synthetic wastewater MR and BN, and the actual sample has been observed under different conditions (different current densities and temperature variation). The investigation of these parameters was performed in order to establish the best conditions for removal of color and chemical oxygen demand (BOD). According to the results obtained in this study, the electrochemical oxidation processes suitable for the degradation process of color and COD in wastewater containing such textile dyes, because the electrocatalytic properties of Pt and BDD anodes consumption energy during the electrochemical oxidation of synthetic solutions AN and MR and real sample, mainly depend on the operating parameters of operation, for example, the synthetic sample of MR, energy consumption rose from 42,00kWhm-3 in 40 mAcm-2 and 25 C to 17,50 kWhm-3 in 40mAcm-2 and 40 C, from the BN went 17,83 kWhm-3 in 40mAcm and 40°C to 14,04 kWhm- 3 in 40mAcm-2 and 40 C (data estimated by the volume of treated effluent). These results clearly indicate the applicability of electrochemical treatment for removing dyes from synthetic solutions and real industrial effluents
Resumo:
Image segmentation is the process of subdiving an image into constituent regions or objects that have similar features. In video segmentation, more than subdividing the frames in object that have similar features, there is a consistency requirement among segmentations of successive frames of the video. Fuzzy segmentation is a region growing technique that assigns to each element in an image (which may have been corrupted by noise and/or shading) a grade of membership between 0 and 1 to an object. In this work we present an application that uses a fuzzy segmentation algorithm to identify and select particles in micrographs and an extension of the algorithm to perform video segmentation. Here, we treat a video shot is treated as a three-dimensional volume with different z slices being occupied by different frames of the video shot. The volume is interactively segmented based on selected seed elements, that will determine the affinity functions based on their motion and color properties. The color information can be extracted from a specific color space or from three channels of a set of color models that are selected based on the correlation of the information from all channels. The motion information is provided into the form of dense optical flows maps. Finally, segmentation of real and synthetic videos and their application in a non-photorealistic rendering (NPR) toll are presented
Resumo:
Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.
Resumo:
The contamination of water sources of public drinking by waste originated by anthropogenic activities has brought various risks to human health. Among the consequences of such activities can highlight the bloom of microalgae and cyanobacteria, which have the potential to produce toxins dangerous to humans, and the presence of humic substances that are generated by the decomposition of natural organic matter (NOM), such as vegetation. When found in water sources for public supply, present negative aspects conferring high color, odor and taste. The double filtration technology has good efficiency in water with the presence of cyanobacteria and different quality variations. Therefore, this study aimed to evaluate the behavior of the technique of double filtration with pre-oxidation for water purifiers the lagoon of Extremoz-RN, which currently has high concentrations of cyanobacteria. The research is summarized in four phases: the first phase turned to static tests in jarteste equipment in the laboratory and subsequent phases were tested in the Pilot Plant of Double Filtration. For the second and third stage filtration rates were tested filtration rates of 120 and 180 m3 / m2 .day for ascending boulders filters and 160 and 240 m3 / m2 .day in the filters in quick sand descendants. The last phase aimed to evaluate the double filtration with pre-oxidation. The results demonstrated that the system could produce double filtration in all trials of good quality water according to the Decree nº. 2914/11 of the Ministry of Health. The use of preoxidation favored the removal of microcystin and color at the end of the tests, reaching a percentage of color removal around 60%. The analysis of variance in the data, enabled prove that the filtration rates of 180 m3 / m2.d the gravel filter and 240 m3 /m2 .d in rapid filters, were the most significant for the removal of turbidity. The ascending filter of boulder 4 with particle size finer filter layer showed the best performance and the best means of turbidity and apparent color. The rapid filter downward 1 was more efficient in removing turbidity reaching removal about 100%
Resumo:
The preparation of nanostructured materials using natural clays as support, has been studied in literature under the same are found in nature and consequently, have a low price. Generally, clays serve as supports for metal oxides by increasing the number of active sites present on the surface and can be applied for various purposes such as adsorption, catalysis and photocatalysis. Some of the materials that are currently highlighted are niobium compounds, in particular, its oxides, by its characteristics such as high acidity, rigidity, water insolubility, oxidative and photocatalytic properties. In this scenario, the study aimed preparing a composite material oxyhydroxide niobium (NbO2OH) / sodium vermiculite clay and evaluate its effectiveness with respect to the natural clay (V0) and NbO2OH. The composite was prepared by precipitation-deposition method and then characterized by X-ray diffraction, infrared spectroscopy (XRD), energy dispersive X-ray (EDS), thermal analysis (TG/DTG), scanning electron microscopy (SEM), N2 adsorption-desorption and investigation of distribution of load. The application of the material NbO2OH/V0 was divided in two steps: first through oxidation and adsorption methods, and second through photocatalytic activity using solar irradiation. Studies of adsorption, oxidation and photocatalytic oxidation monitored the percentage of color removal from the dye methylene blue (MB) by UV-Vis spectroscopy. The XRD showed a decrease in reflection d (001) clay after modification; the FTIR indicated the presence of both the clay when the oxyhydroxide niobium to present bands in 1003 cm-1 related to Si-O stretching bands and 800 cm-1 to the Nb-O stretching. The presence of niobium was also confirmed by EDS indicated that 17 % by mass amount of the metal. Thermal analysis showed thermal stability of the composite at 217 °C and micrographs showed that there was a decrease in particle size. The investigation of the surface charge of NbO2OH/V0 found that the material exhibits a heterogeneous surface with average low and high negative charges. Adsorption tests showed that the composite NbO2OH/V0 higher adsorption capacity to remove 56 % of AM, while the material removed from V0 only 13 % showed no NbO2OH and adsorptive capacity due to the formation of H-aggregates. The percent removal of dye color for the oxidation tests showed little difference from the adsorption, being 18 and 66 % removal of dye color for V0 and NbO2OH/V0 respectively. The NbO2OH/V0 material shows excellent photocatalytic activity managing to remove just 95,5 % in 180 minutes of the color of MB compared to 41,4 % and 82,2 % of V0 the NbO2OH, proving the formation of a new composite with distinct properties of its precursors.