10 resultados para Botucatu

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of products whose purpose is to promote blockages in high permeability zones as well as to control the hydrate or scale formation also needs some tests in porous media before using the product in the field, where attempts and unavoidable operational errors costs would able to derail any projects. The aim of this study was to analyze and compare the Botucatu and Berea sandstones properties, involving problems related to loss permeability. It was observed that even cores of Berea, without expansible clays in their composition had their permeability reduced, as soon as the salinity of brine reached a lower limit. As expected, the same happened with the Botucatu sandstone samples, however, in this case, the sensitivity to low salinity was more pronounced. In a second phase, the research was focused on the Botucatu Sandstone behavior front of dilute polymer solutions injection, checking the main relationships between the Rock / Fluid interactions, considering the Mobility Reduction, Resistance and Residual Resistance Factors, as well as adsorption/desorption processes of these polymers, and the polymer molecules average size and porous sandstone average size ratio. The results for both phases showed a real feasibility of using the Botucatu sandstone in laboratory tests whose objective is the displacement of fluids through porous media

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ARAUJO, Afranio Cesar de et al. Caracterização socio-econômico-cultural de raizeiros e procedimentos pós-colheita de plantas medicinais comercializadas em Maceió, AL. Rev. Bras. Pl. Med, Botucatu, v. 11, n. 01, p.81-91, 2009. Disponível em: . Acesso em: 04 out. 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum is a complex combination of various classes of hydrocarbons, with paraffinic, naphtenic and aromatic compounds being those more commonly found in its composition. The recent changes in the world scenario, the large reserves of heavy oils and also the lack of new discoveries of large petroleum fields are indications that, in the near future, the oil recovery by conventional methods will be limited. In order to increase the efficiency of the extraction process, enhanced recovery methods are cited in applications where conventional techniques have proven to be little effective. The injection of surfactant solutions as an enhanced recovery method is advantageous in that surfactants are able to reduce the interfacial tensions between water and oil, thus augmenting the displacement efficiency and, as a consequence, increasing the recovery factor. This work aims to investigate the effects of some parameters that influence the surfactant behavior in solution, namely the type of surfactant, the critical micelle concentration (CMC) and the surface and interface tensions between fluids. Seawater solutions containing the surfactants PAN, PHN and PJN have been prepared for presenting lower interfacial tensions with petroleum and higher stability under increasing temperature and salinity. They were examined in an experimental apparatus designed to assess the recovery factor. Botucatu (Brazil) sandstone plug samples were submitted to assay steps comprising saturation with seawater and petroleum, conventional recovery with seawater and enhanced recovery with surfactant solutions. The plugs had porosity between 29.6 and 32.0%, with average effective permeability to water of 83 mD. The PJN surfactant, at a concentration 1000% above CMC in water, had a higher recovery factor, causing the original oil in place to be recovered by an extra 20.97%, after conventional recovery with seawater

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents studies related to the use of microemulsions in the solubilization of heavy crude oil fractions responsible by the formation of deposits. The first stage of the work was addressed to the construction of phases diagrams, with the intention of determining the area within which the microemulsion is formed. The following systems were studied: UNITOL L 90 n-Butanol - Water - Kerosene (system 1); UNITOL L 90 - n-Butanol - Water - Xylene (system 2); UNITOL L 90 n-Butanol - Water - Kerosene/Xylene 10% (system 3); UNITOL L 90 - Sec-Butanol - Water - Xylene (system 4). In parallel experiments of physical adsorption were carried out by the static method, with the intention of simulating natural conditions of reservoirs. Crude oil of the Fazenda Belém field (Rio Grande do Norte), was used as solute, xylene as solvent and the Assu sandstone (Rio Grande do Norte, Brazil) and Botucatu sandstone (Paraná, Brazil) as rock reservoirs. The curves of adsorption presented the S format type, in agreement with the classification proposed by Giles, Smith and Huitson (1974). The solubilization process was accomplished in the batch method, by varying the time of agitation, the microemulsions and the solid/solution ratio. The experiments showed that the microemulsions presented high efficiency in the solubilization of the crude oil adsorbed on the sandstones. System 2 presented an efficiency of 99% for the Assu sandstone and 97% for the Botucatu sandstone

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A exploração de petróleo está a cada dia em circunstâncias mais adversas, no que diz respeito à profundidade dos poços como também, em relação à fluidez do óleo. Os reservatórios de descobertas recentes não possuem energia própria para produzir ou os métodos convencionais não são eficientes para fazer com que esses reservatórios tenham uma vida útil elevada, devido a alterações das propriedades físico-químicas, como por exemplo a viscosidade, que torna o deslocamento do óleo pelos poros do reservatório até a superfície cada vez mais complexo. O presente trabalho tem como objetivo estudar a preparação, caracterização e a utilização de nanoemulsões obtidas a partir de sistemas microemulsionados, com e sem a presença de polímero. Esses sistemas foram aplicados como método químico de recuperação de petróleo, com o intuito de obter maior eficiência de volume de óleo deslocado. O interesse por esse tipo de sistema existe devido a sua baixa tensão superficial, o pequeno tamanho de gotícula e, principalmente, pelo baixo percentual de matéria ativa presente em sua composição. Os ensaios realizados para caracterizar esses sistemas foram: aspecto físico, medidas de tamanho de gotícula, índice de polidispersão, tensão superficial, pH e condutividade. Ensaios de reologia e de adsorção dos sistemas foram realizados com o objetivo de avaliar sua influencia na recuperação de petróleo. Os ensaios de recuperação foram realizados em um equipamento que simula as condições de um reservatório de petróleo, utilizando plugs de rocha arenito Botucatu. Esses plugs foram saturados com salmoura (KCl 2%) e com petróleo proveniente da Bacia Potiguar do campo de Ubarana. Após essas etapas foi realizada a recuperação convencional utilizando a salmoura e, por último, foi injetada, a nanoemulsão, como método de recuperação avançada. Os sistemas obtidos variaram de 0% à 0,4% de polímero. Os ensaios de tamanhos de partícula obtiveram como resultado uma variação de 9,22 a 14,8 nm, caracterizando que as nanoemulsões estão dentro da faixa de tamanho inerente a esse tipo de sistema. Para ensaios de tensão superficial os valores foram na faixa de 33,6 a 39,7 dynas/cm, valores semelhantes à microemulsões e bem abaixo da tensão superficial da água. Os resultados obtidos para os valores de pH e condutividade se mantiveram estáveis ao longo do tempo de armazenamento, essa avaliação indica estabilidade das nanoemulsões estudadas. O teste de recuperação avançada utilizando nanoemulsão com baixo percentual de matéria ativa obteve como resultado de eficiência de deslocamento 39,4%. Porém esse valor foi crescente, de acordo com o aumento do percentual de polímero na nanomeulsão. Os resultados de eficiência de deslocamento de petróleo estão diretamente relacionados com o aumento da viscosidade das nanoemulsões. A nanoemulsão V (0,4% polímero) é o sistema mais viscoso dentre os analisados, e obteve o maior percentual de óleo deslocado (76,7%), resultando na maior eficiência de deslocamento total (90%). Esse estudo mostrou o potencial de sistemas nanoemulsionados, com e sem polímeros, na recuperação avançada de petróleo. Eles apresentam algumas vantagens com relação a outros métodos de recuperação avançada, como: o baixo percentual de matéria ativa, baixo índice de adsorção do polímero, dissolvido em nanoemulsão, na rocha e alta eficiência de recuperação

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petroleum exists in the nature in certain underground formations where it is adsorbed into the rocks pores. For the conventional recovery methods usually only 30% of the oil is extracted and this can be credited, basically, to three aspects: high viscosity of the oil, geology of the formation and high interfacial tensions between the reservoir s fluids. The enhanced recovery methods use the injection of a fluid or fluids mixture in a reservoir to act in points where the conventional process didn't reach the recovery rates. Microemulsion flooding, considered an enhanced method, has the purpose to desorb the oil from the rock formation and to attain an efficient displacement of the oil emulsion. With this in mind, this work was accomplished with two main objectives: the study of the parameters effect that influence a microemulsified system (surfactant and cosurfactant types, C/S rate and salinity) and the evaluation of displacement efficiency with the microemulsions that showed stability in the rich aqueous area. For the analyzed parameters it was chose the microemulsions composition used in the recovery stage: 25% water, 5% kerosene, 46.7% of butanol as cosurfactant and 23.3% of BC or SCO cosurfactant. The core plugs of Assu and Botucatu sandstones were appraised in porosity and permeability tests and then submitted to the steps of saturation with seawater and oil, conventional recovery with water and enhanced recovery with the selected microemulsions. The Botucatu sandstone presented better recovery parameters, and the microemulsion composed with BS surfactant had larger recovery efficiency (26.88%)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In heavy oil fields there is a great difficulty of the oil to flow from the reservoir to the well, making its production more difficult and with high cost. Most of the original volumes of oil found in the world are considered unrecoverable by the use of the current methods. The injection of micellar solutions has a direct action in the oil interfacial properties, resulting in an enhanced oil recovery. The objective of this research was the study and selection of micellar solutions with ability to decrease the interfacial interactions between fluids and reservoir formation, increasing oil production. The selected micellar solutions were obtained using commercial surfactants and surfactants synthesized in laboratory, based on the intrinsic properties of these molecules, to use in the enhanced oil recovery. Petroleum Reservoirs were simulated using sandstone plugs from Botucatu formation. Experiments with conventional and enhanced oil recovery techniques were accomplished. The obtained results showed that all micellar solutions were able to enhance oil recovery, and the micellar solution prepared with a SB anionic surfactant, at 2% KCl solution, showed the best recovery factor. It was also accomplished an economic analysis with the SB surfactant solution. With the injection of 20% porous volume of micellar solution, followed by brine injection, the increment in petroleum recovery can reach 81% recovery factor in the 3rd porous volume injected. The increment in the total cost by the addition of surfactant to the injection water represents R$ 7.50/ton of injected fluid

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The high concentration of residual oil is one of the greatest problems found in petroleum mature fields. In these reservoirs, different enhanced oil recovery methods (EOR) can be used, highlighting the microemulsion injection. The microemulsion has showed to be efficient in petroleum recovery due to its ability to promote an efficient displacement of the petroleum, acting directly in the residual oil. In this way, this research has as objective the study of microemulsion systems obtained using a commercial surfactant (TP), determining microemulsion thermal stabilities and selecting points inside the pseudoternary phases diagram, evaluating its efficiencies and choosing the best system, that has the following composition: TP as surfactant (S), isopropyl alcohol as co-surfactant (C), kerosene as oil phase, water as aqueous phase, C/S ratio = 1, and 5% sodium p-toluenesulfonate as hydrotope; being observed the following parameters for the selection of the best pseudoternary phases diagram: C/S ratio, co-surfactant nature and addition of hydrotope to the system. The efficiency in petroleum recovery was obtained using two sandstone formation systems: Assu and Botucatu. The study of thermal stabilities showed that as the concentration of active matter in the system increased, the thermal stability also increased. The best thermal stability was obtained using point F (79.56 0C). The system that presented the best recovery percentile between the three selected (3) was composed by: 70% C/S, 2% kerosene and 28% water, with 94% of total recovery efficiency and 60% with microemulsion injection, using the Botucatu formation, that in a general way presented greater efficiencies as compared with the Assu one (81.3% of total recovery efficiency and 38.3% with microemulsion injection)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the need of increasing production in reservoirs that are going through production decline, methods of advanced recovery have frequently been used in the last years, as the use of conventional methods has not been successful in solving the problem of oil drifting. In this work, the efficiency of different microemulsionated systems in the flow of oil from cores from Assu and Botucatu formations. Regarding drifting tests, cores were calcinated at a temperature of 1000°C, for 18 hours, with the aim of eliminating any organic compound present in it, increasing the resultant permeability. Following, the cores were isolated with resin, resulting in test specimens with the following dimensions: 3.8 cm of diameter and 8.7 cm of length. Cores were saturated with brine, composed of aqueous 2 wt % KCl, and oil from Guamaré treatment station (Petrobras/RN). A pressure of 20 psi was used in all tests. After core saturation, brine was injected again, followed by oil at constant flow rate. The system S3 - surfactant (anionic surfactant of short chain), isoamillic alcohol, pine oil, and water - presented the best drift efficiency, 81.18%, while the system S1E commercial surfactant, ethyl alcohol, pine oil, and distilled water presented low drift efficiency, 44,68%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to study the influence of two additives, the monomer, acrylamide and its polymer, polyacrylamide, solubilized in microemulsion systems and applied on enhanced oil recovery. By the microemulsion system obtained, it was chosen points into the phase diagram, presenting these compositions: 25%, 30%, 35% C/T; 2% Fo (fixed for all points) e 73%, 68% e 63% Fa, respectively. However, the monomer and the polymer were solubilized in these microemulsion points with 0.1%; 0.5%; 1% e 2% of concentration, ordering to check the concentration influence at the physicochemical properties (surface tension and rheology) of the microemulsion. Through the salinity study, was possible to observe that the concentrations of 1% and 2% of polymer made the solution became blurred, accordingly, the study of surface tension and rheology only was made for the concentrations of 0.1% e 0.5% of monomer and polymer, respectively. By the surface tension study it was observed that how the concentration of active matter (C/T) was increasing the surface tension was amending for each system, with or without additives. In the rheology study, as it increases the concentration of active matter increases both the viscosity of the microemulsion system (SME) with no additive, as the SME with polymer (AD2). After the entire study, it was chosen the lower point of active matter (25% C/T; 2% Fo e 73% Fa), plus additives in concentrations of 0.1% and 0.5% to be used on enhanced oil recovery. Assays were made on sandstone from Botucatu Formation, where after the tests, it was concluded that among the studied points, the point who showed the best efficiency of advanced shift was the microemulsion system + 0.5% AD2, with a recovery of 28% of oil in place and a total of 96,49%, while the other solution with 0.5% of polymer presented the worst result, with 14.1% of oil in place and 67,39% of efficiency of total displacement