5 resultados para Bone Marrow

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human multipotent mesenchymal stromal cells (MSCs), also known as mesenchymal stem cells, have become an important and attractive therapeutic tool since they are easily isolated and cultured, have in vitro expansion potential, substantial plasticity and secrete bioactive molecules that exert trophic effects. The human umbilical cord as a cell source for cell therapy will help to avoid several ethical, political, religious and technical issues. One of the main issues with SC lines from different sources, mainly those of embryonic origin, is the possibility of chromosomal alterations and genomic instability during in vitro expansion. Cells isolated from one umbilical cord exhibited a rare balanced paracentric inversion, likely a cytogenetic constitutional alteration, karyotype: 46,XY,inv(3)(p13p25~26). Important genes related to cancer predisposition and others involved in DNA repair are located in 3p25~26. Titanium is an excellent biomaterial for bone-implant integration; however, the use can result in the generation of particulate debris that can accumulate in the tissues adjacent to the prosthesis, in the local bone marrow, in the lymph nodes, liver and spleen. Subsequently may elicit important biological responses that aren´t well studied. In this work, we have studied the genetic stability of MSC isolated from the umbilical cord vein during in vitro expansion, after the cryopreservation, and under different concentrations and time of exposition to titanium microparticles. Cells were isolated, in vitro expanded, demonstrated capacity for osteogenic, adipogenic and chondrogenic differentiation and were evaluated using flow cytometry, so they met the minimum requirements for characterization as MSCs. The cells were expanded under different concentrations and time of exposition to titanium microparticles. The genetic stability of MSCs was assessed by cytogenetic analysis, fluorescence in situ hybridization (FISH) and analysis of micronucleus and other nuclear alterations (CBMN). The cells were able to internalize the titanium microparticles, but MSCs preserve their morphology, differentiation capacity and surface marker expression profiles. Furthermore, there was an increase in the genomic instability after long time of in vitro expansion, and this instability was greater when cells were exposed to high doses of titanium microparticles that induced oxidative stress. It is necessary always assess the risks/ benefits of using titanium in tissue therapy involving MSCs, considering the biosafety of the use of bone regeneration using titanium and MSCs. Even without using titanium, it is important that the therapeutic use of such cells is based on analyzes that ensure quality, security and cellular stability, with the standardization of quality control programs appropriate. In conclusion, it is suggested that cytogenetic analysis, FISH analysis and the micronucleus and other nuclear alterations are carried out in CTMH before implanting in a patient

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bone marrow transplantation (BMT) is currently the best therapeutic option for patients with hematologic diseases, solid tumors or autoimmune disorders. It is characterized by intravenous infusion of hematopoietic stem cells in order to restore marrow function. However, this procedure requires concomitant immunosuppression treatment, which favors the development of certain complications, often manifested in the oral cavity. This study aimed to evaluate the incidence of oral changes in patients undergoing BMT and to correlate these results with clinical aspects related to the patients and the transplants performed. This is a prevalence study, with cross-sectional design, carried out in a BMT service at the Institute of Onco-Hematology of Natal (ION) and Natal Hospital Center. Data collection was based on questionnaires, clinical examination of the oral cavity and consultation in the medical records. The sample consisted of 51 patients undergoing BMT. After the analysis, was found a general status with good health conditions and presence of oral changes in about half of patients who composed the sample. The manifestations observed were, in decreasing order of frequency: mucositis; gingival alteration and thrombocytopenic purpura; mucosal pigmentation; lichenoid reaction and candidiasis. The oral changes were observed more frequently in cases of allogeneic TMO, in different periods post-transplant, without significant differences related to the source of cells. It was found statistically significant association between the presence of graft-versus-host disease (GVHD) and oral changes (p < 0,001). Therefore, it is concluded that there is a relatively high incidence of changes in oral cavity of patients receiving bone marrow transplantation, a fact which confirms the need to consider this site for examination, diagnosis, treatment and prognosis of possible complications of BMT

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of evidences show the influence of the growth of injured nerve fibers in Peripheral Nervous System (PNS) as well as potential implant stem cells (SCs) to make it more suitable for nerve regeneration medium. In this perspective, this study aimed to evaluate the plasticity of mesenchymal stem cells from bone marrow of mice in the presence of culture medium conditioned with facial nerve explants (D-10) and fibroblast growth factor-2 (FGF-2). In this perspective, the cells were cultivated only with DMEM (group 1), only with D-10(group 2), only with FGF-2(group 3) or with D-10 and FGF-2(group 4). The growth and morphology were assessed over 72 hours. Quantitative phenotypic analysis was taken from the immunocytochemistry for GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200 on the fourth day of cultivation. Cells cultured with conditioned medium alone or combined with FGF-2 showed distinct morphological features similar apparent at certain times with neurons and glial cells and a significant proliferative activity in groups 2 and 4 throughout the days. Cells cultived only with conditioned medium acquired a glial phenotype. Cells cultured with FGF-2 and conditioned medium expressed GFAP, OX-42, MAP-2, β-tubulin III, NeuN and NF-200. On average, area and perimeter fo the group of cells positive for GFAP and the área of the cells immunostained for OX-42 were higher than those of the group 4. This study enabled the plasticity of mesenchymal cells (MCs) in neuronal and glial nineage and opened prospects for the search with cell therapy and transdifferentiation

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The regeneration of bone defects with loss of substance remains as a therapeutic challenge in the medical field. There are basically four types of grafts: autologous, allogenic, xenogenic and isogenic. It is a consensus that autologous bone is the most suitable material for this purpose, but there are limitations to its use, especially the insufficient amount in the donor. Surveys show that the components of the extracellular matrix (ECM) are generally conserved between different species and are well tolerated even in xenogenic recipient. Thus, several studies have been conducted in the search for a replacement for autogenous bone scaffold using the technique of decellularization. To obtain these scaffolds, tissue must undergo a process of cell removal that causes minimal adverse effects on the composition, biological activity and mechanical integrity of the remaining extracellular matrix. There is not, however, a conformity among researchers about the best protocol for decellularization, since each of these treatments interfere differently in biochemical composition, ultrastructure and mechanical properties of the extracellular matrix, affecting the type of immune response to the material. Further down the arsenal of research involving decellularization bone tissue represents another obstacle to the arrival of a consensus protocol. The present study aimed to evaluate the influence of decellularization methods in the production of biological scaffolds from skeletal organs of mice, for their use for grafting. This was a laboratory study, sequenced in two distinct stages. In the first phase 12 mice hemi-calvariae were evaluated, divided into three groups (n = 4) and submitted to three different decellularization protocols (SDS [group I], trypsin [Group II], Triton X-100 [Group III]). We tried to identify the one that promotes most efficient cell removal, simultaneously to the best structural preservation of the bone extracellular matrix. Therefore, we performed quantitative analysis of the number of remaining cells and descriptive analysis of the scaffolds, made possible by microscopy. In the second stage, a study was conducted to evaluate the in vitro adhesion of mice bone marrow mesenchymal cells, cultured on these scaffolds, previously decellularized. Through manual counting of cells on scaffolds there was a complete cell removal in Group II, Group I showed a practically complete cell removal, and Group III displayed cell remains. The findings allowed us to observe a significant difference only between Groups II and III (p = 0.042). Better maintenance of the collagen structure was obtained with Triton X-100, whereas the decellularization with Trypsin was responsible for the major structural changes in the scaffolds. After culture, the adhesion of mesenchymal cells was only observed in specimens deccelularized with Trypsin. Due to the potential for total removal of cells and the ability to allow adherence of these, the protocol based on the use of Trypsin (Group II) was considered the most suitable for use in future experiments involving bone grafting decellularized scaffolds