13 resultados para Bone Cell Adhesion, Ion-implanted, Titanium Discs, Argon ions, Adhesion and Proliferation, Osteoblast growth, Cell Adhesion

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present experiment used cell culture to analyze the adhesion capacity of mouse mesenchymal bone marrow cells and rat periodontal ligament to different titanium surfaces. Grade II ASTM F86 titanium discs 15mm in diameter and 1.5mm thick were used and received 2 distinct surface treatments (polished and cathodic cage plasma nitriding). The cells were isolated from the mouse bone marrow and rat periodontal ligament and cultured in α-MEM basic culture medium containing antibiotics and supplemented with 10% FBS and 5% CO2, for 72 hours at 37ºC in a humidified atmosphere. Subculture cells were cultured in a 24-well plate with a density of 1 x 104 cells per well. The titanium discs were distributed in accordance with the groups, including positive controls without titanium discs. After a 24-hour culture, the cells were counted in a Neubauer chamber. The results show that both the mouse mesenchymal bone marrow cells and rat periodontal ligament cells had better adhesion to the control surface. The number of bone marrow cells adhered to the polished Ti surface was not statistically significant when compared to the same type of cell adhered to the Ti surface treated by cathodic cage plasma nitriding. However a significant difference was found between the control and polished Ti groups. In relation to periodontal ligament cell adhesion, a significant difference was only found between the control and plasma-treated Ti surfaces. When comparing equal surfaces with different cells, no statistically significant difference was observed. We can therefore conclude that titanium is a good material for mesenchymal cell adhesion and that different material surface treatments can influence this process

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last years, many scientific researches in implantology have been focused on alternatives that would provide higher speed and quality in the process of osseointegration. Different treatment methods can be used to modify the topographic and chemical properties of titanium surface in order to optimize the tissue-implant reactions by a positive tissue response. This study aimed to evaluate the adhesion and proliferation of mesenchymal cells from human periodontal ligament on two different titanium surfaces, using cell culture techniques. Grade II titanium discs received different surface treatments, forming two distinct groups: polished and cathodic cage plasma nitriding. Human periodontal ligament mesenchymal cells were cultured on titanium discs in 24-well cell culture plates, at a density of 2 x 104 cells per well, including wells with no discs as positive control. Data obtained by counting the cells that adhered to the titanium surfaces (polished group and cathodic cage group) and to the plastic surface (control group), in the 24, 48 and 72-hour periods after plating, were used to analyze cell adhesion and proliferation and to obtain the cell growing curve in the different groups. The data were submitted to nonparametric analysis and the differences between groups were compared by Kruskal-Wallis and Friedman statistical tests. No statistically significant differences were found in the cells counts between the groups (p>0.05). It was concluded that both treatments produced surfaces compatible with the adhesion and proliferation of human periodontal ligament mesenchymal cells

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SILVA, J. S. P. Estudo das características físico-químicas e biológicas pela adesão de osteoblastos em superfícies de titânio modificadas pela nitretação em plasma. 2008. 119 f. Tese (Doutorado) - Faculdade de Medicina, Universidade de São Paulo. São Paulo, 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The titanium and titanium alloys are widely used as biomaterial in biomedical device and so research have been developed aiming to improve and/or better to understand interaction biomaterial/biological environment. The process for manufacturing of this titanium implants usually involves a series of thermal and mechanical processes which have consequence on the final product. The heat treatments are usually used to obtain different properties for each application. In order to understand the influence of these treatments on the biological response of the surface, it was done, in this work, different heat treatments in titanium and analyzed their influence on the morphology, adhesion and proliferation of the pre-osteoblastic cells (MC3T3-E1). For such heat-treated titanium disks were characterized by optical microscopy, contact angle, surface energy, roughness, microhardness, X-ray diffraction and scanning through the techniques (BSE, EDS and EBSD). For the analysis of biological response were tested by MTT proliferation, adhesion by crystal violet and β1 integrin expression by flow cytometry. It was found that the presence of a microstructure very orderly, defined by a chemical attack, cells tend to stretch in the same direction of orientation of the material microstructure. When this order does not happen, the most important factor influencing cell proliferation is the residual stress, indicated by the hardness of the material. This way the disks with the highest level state of residual stress also showed increased cell proliferation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial cellulose (BC) has a wide range of potential applications, namely as temporary substitute skin in the treatment of skin wounds, such as burns, ulcers and grafts. Surface properties determine the functional response of cells, an important factor for the successful development of biomaterials. This work evaluates the influence of bacterial cellulose surface treatment by plasma (BCP) on the cellular behavior and its genotoxicity potential. The modified surface was produced by plasma discharge in N2 and O2 atmosphere, and the roughness produced by ion bombardment characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Cell adhesion, viability and proliferation on BCP were analysed using crystal violet staining and the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium (MTT) method. Genotoxicity was evaluated using the comet and cytokinesis block micronucleus assay. The results show that the plasma treatment changed surface roughness, producing an ideal cell attachment, evidenced by more elongated cell morphology and improved proliferation. The excellent biocompatibility of BCP was confirmed by genotoxicity tests, which showed no significant DNA damage. The BCP has therefore great potential as a new artificial implant

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium is a biomaterial widely employed in biomedical applications (implants, prostheses, valves, stents). Several heat treatments are usually used in order to obtain physical properties required to different applications. This work studied the influence of the heat treatment on microstructure of commercial pure titanium, and their consequences in growth and proliferation of MC3T3-E1 cells. Discs of titanium were treated in different temperatures, and characterized by optical microscopy, image analysis, wettabillity, roughness, hardness and X-ray diffraction. After the heat treatment, significant modifications in these properties were observed. Pattern images of titanium, before and after the cell culture, were compared by overlapping to analyze the influence of microstructure in microstructure and preferences guidance cells. However, in general, titanium discs that showed a higher residual strength also presented an increase of cells numbers on surface

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The titanium and titanium alloys are widely used as biomaterial in biomedical device and so research have been developed aiming to improve and/or better to understand interaction biomaterial/biological environment. The process for manufacturing of this titanium implants usually involves a series of thermal and mechanical processes which have consequence on the final product. The heat treatments are usually used to obtain different properties for each application. In order to understand the influence of these treatments on the biological response of the surface, it was done, in this work, different heat treatments in titanium and analyzed their influence on the morphology, adhesion and proliferation of the pre-osteoblastic cells (MC3T3-E1). For such heat-treated titanium disks were characterized by optical microscopy, contact angle, surface energy, roughness, microhardness, X-ray diffraction and scanning through the techniques (BSE, EDS and EBSD). For the analysis of biological response were tested by MTT proliferation, adhesion by crystal violet and β1 integrin expression by flow cytometry. It was found that the presence of a microstructure very orderly, defined by a chemical attack, cells tend to stretch in the same direction of orientation of the material microstructure. When this order does not happen, the most important factor influencing cell proliferation is the residual stress, indicated by the hardness of the material. This way the disks with the highest level state of residual stress also showed increased cell proliferation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryopreservation is a process where cells or biological tissues are preserved by freezing at very low temperatures and aims to cease reversibly, in a controlled manner, all the biological functions of living tissues, i.e., maintain cell preservation so that it can recover with high degree of viability and functional integrity. This study aimed to evaluate the influence of cryopreservation on the mesenchymal stem cells originating from the periodontal ligament of human third molars by in vitro experiments. Six healthy teeth were removed and the periodontal cells grown in culture medium containing α-MEM supplemented with antibiotics and 15% FBS in a humidified atmosphere with 5% CO2 at 37° C. Cells isolated from each sample were divided into two groups: Group I - immediate cell culture (not fresh cryopreserved cells) and Group II - cell cryopreservation, during a period of 30 days. Analyses of rates of cell adhesion and proliferation in different groups were performed by counting the cells adhered to the wells, in intervals of 24, 48 and 72 hours after the start of cultivation. The number of cells in each well was obtained by counting viable cells with the use of hemocytometer and the method of exclusion of cells stained by trypan blue. The difference between groups for each of the times was analyzed by Wilcoxon test. Regarding the temporal evolution for each group, analysis was done by Friedman's test to verify the existence of differences between times and, when it existed, the Wilcoxon penalty was applied. The results showed no statistically significant difference between the two groups analyzed in this study. Therefore, we conclude that the cryopreservation process, after a period of 30 days, did not influence the cell type studied, and there was no difference in growth capacity in vitro between the groups