5 resultados para Blade of irrigation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditional irrigation projects do not locally determine the water availability in the soil. Then, irregular irrigation cycles may occur: some with insufficient amount that leads to water deficit, other with excessive watering that causes lack of oxygen in plants. Due to the nonlinear nature of this problem and the multivariable context of irrigation processes, fuzzy logic is suggested to replace commercial ON-OFF irrigation system with predefined timing. Other limitation of commercial solutions is that irrigation processes either consider the different watering needs throughout plant growth cycles or the climate changes. In order to fulfill location based agricultural needs, it is indicated to monitor environmental data using wireless sensors connected to an intelligent control system. This is more evident in applications as precision agriculture. This work presents the theoretical and experimental development of a fuzzy system to implement a spatially differentiated control of an irrigation system, based on soil moisture measurement with wireless sensor nodes. The control system architecture is modular: a fuzzy supervisor determines the soil moisture set point of each sensor node area (according to the soil-plant set) and another fuzzy system, embedded in the sensor node, does the local control and actuates in the irrigation system. The fuzzy control system was simulated with SIMULINK® programming tool and was experimentally built embedded in mobile device SunSPOTTM operating in ZigBee. Controller models were designed and evaluated in different combinations of input variables and inference rules base

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The scarcity of farmland, reducing the supply of irrigation water and lack of technologies for conservation, makes the globalized world facing serious difficulties in the production of food for its population. The most viable outlet for this dilemma is the dissemination of technologies, economically viable and available to the whole population, for dehydration of perishable foods produced. This paper presents a solar dryer of direct exposure to the production of dried fruit, made from recycled polyethylene drum of 200 liters, used for storing water or trash. The drum was sectioned in half in its longitudinal axis and has its halves together forming a trough-like structure. It describes the processes of construction and assembly of solar dryer proposed, whose main characteristic its low cost, and was designed for use by people with low income, for processing fruits widely available in our region (mango, banana, guava, cashew, pineapple, tomato and others) in dried fruit and flour, contributing significantly to increase the life of these foods. The nuts and flours can be used for own consumption and for marketing jobs and income generation. Tests were conducted to diagnose the feasibility of using solar dryer for the various types of tropical fruits. Were also compared parameters such as drying times and thermal efficiency obtained with the prototype found in the specialized literature in food dehydration. The drying times in the dryer were obtained competitive with those obtained in other models of dryers LMHES developed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The urban drainage is one of the powers of environmental sanitation and its scope is the quantitative and qualitative aspects. In decision making of managers and the engineering aspects of design are almost always taken into account only the quantitative aspects. However, the waters of the runoff have the highest concentrations of pollutants at the beginning of precipitation. Thus, if the plot pollution removed, the remaining portion can be used for other purposes. This work has aimed to present the variation of water quality of two drainage basins in the city of Natal / RN-Brazil to support the implementation of drainage to consider the qualitative aspect, and identify potential for the use of water. The basins (M and C) are analyzed closed-type, are in the urban area, are predominantly residential occupation and its waters are used for detention ponds and infiltration. The samples were divided into three phases, the first two direct to final points in a basin and the third in traps distributed over the surface drainage. The parameters had been analyzed were pH, conductivity, dissolved oxygen, Color, Turbidity, COD, Ammonia, nitrite, nitrate, total phosphorus, orthophosphate, Sediments solids, total solids, chloride, sulfate, alkalinity, calcium, magnesium, sodium, potassium, Heavy Metals (Chromium, Cadmium, Lead, Zinc and Copper), Eschichia coli and total coliforms. The parameters studied showed high initial pollution load, events and located in different proportions, except nitrite, heavy metals and biological indicators. The size of the surface drainage and topographic its features influence the quality of water. However, the form of sampling is crucial in the qualitative study in the basin. The samplers developed at work, were generated economic and representative results. The urban rainwater presents organic faecal indicators. The runoff of water from both basins shows no risk of salinity and sodicity for use in irrigation, should be noted the content of chloride in the choice of method of irrigation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Oral and facial bone defects can undertake appearance, psychosocial well-being and stomathognatic function of its patients. Over the yerars several strategies for bone defect regeneration have arised to treat these pathologies, among them the use of frozen and irradiated bone allograft. Manipulation of bone grafts it s not determined yet, and several osteotomy alternatives can be observed. The present work evaluated with a microscope the bone fragments obtained from different osteotomy methods and irrigation on rings and blocks allografts irradiated and frozen at 80° negative in a rabbit model. The study is experimental in vitro and it sample was an adult male New Zealand rabbit. The animal was sacrificed to obtain long bones, that were submitted to freezing at 80º negative and irradiated with Cobalt- 60. Then the long bones were sectioned into 24 bone pieces, divided into 4 groups: G1 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thickness with high-speed handpiece with manual irrigation; G2 (n=06) osteotomy was performed with bur No. 6 forming rings with 5 mm thick with surgical motor with a manual irrigation rotation 1500 rpm; GA (n=06), osteotomy with trephine using manual irrigation with saline; and GB (n=06), osteotomy with trephine using saline from peristaltic pumps of surgical motor. Five bone pieces of each group were prepared for analysis on light microscopy (LM) and one on electronic scan electronic microscopy (SEM). On the SEM analysis edges surface, presence of microcracks and Smear Layer were evaluated. Analyzing osteotomy technics on SEM was observed: increased presence of microcracks cutting with high speed; increased presence of areas covered by Smear Layer when cutting with motor implant. The irrigation analysis with SEM was observed: that the presence of microcracks does not depend on the type of irrigation; on manual irrigation, there was greater discrepancy between the cutting lines. The descriptive analysis of the osteotomy and irrigation process on LM showed: histological analysis showing the bony margins with clear tissue changed layer, composed of blackened tissue of charred appearance near to the cortical bone; on the edges of the bony part, bone fragments that were displaced during the bone cut and bone irregularities were observed. After analysis of results we can conclude: that there was greater regularity of the bone cut using high-speed handpiece than using motor implant; the cut with trephine using saline irrigated from peristaltic pumps of surgical motor showed greater homogeneity when compared with manual irrigation; charred tissue was found in all obtained bone samples, whit no significant statistically difference on the proportion of carbonization of the two analysed technics

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cactus pear is an important forage for livestock in semi-arid region of Brazil, due to its adaptation to climate conditions in this region, high productivity and nutritional value. The yield of this cactus has positively responded to techniques such as planting density, fertilization and cutting managements, however, in Rio Grande do Norte State, only certain areas have favorable climate conditions to the development of this crop. Drip irrigation, with a small amount of water, has proven to be an alternative to the viability of cactus pear cultivation in these areas. The research aimed to evaluate the effects of different levels of saline water and manure organic fertilization on the morphological characteristics and production of fresh and dry matter of the prickly-pear cactus cv. Miúda (Nopalea cochenillifera Salm Dick) in a dense planting system. The experiment was conducted at the Experimental Station of Terras Secas (EMPARN), Pedro Avelino, latitude 5°31'21" South and longitude 36°23'14" West. The soil was classified as Typical Cambisol Haplicum Carbonate and the water used in irrigation, C4S1T3 (5,25 dS.m-1), with planting spacing of 2.0 x 0.25 m (20,000 plants ha-1). A completely randomized design in a split plot was used, where water levels (0, 7.5, 15.0 and 30.0 mm month-1) with 10 days intervals, were the main plots and organic fertilization (0 , 25 and 50 Mg ha-1 yr-1) the subplots, with four replicates. The measured morphological characteristics were number of cladodes, height and volume of the plant; length, width, perimeter, thickness, area and cladodes area index, fresh and dry matter production, dry matter content, water use efficiency (WUE) and damage promoted by cochineal pest (Diaspis echinocacti) and soft rot (Erwinia carotovora). There was no influence (P>0.05) of organic fertilization on most variables, particularly in relation to the production of fresh and dry matter. The water levels had a significant influence (P<0.05) on most variables, promoting higher height and volume of the plants, larger and thicker cladodes, and increase on fresh and dry matter production (13.55 Mg DM ha-1 yr-1). The absence of irrigation caused a significant expansion in plant damage caused by the cochineal pest and when irrigated with different water levels there was an increase in damage and stand loss, caused by soft rot, been more intense at the higher water level.