2 resultados para Binary Codes

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a performance analysis of transmission schemes employing turbo trellis coded modulation. In general, the performance analysis of such schemes is guided by evaluating the error probability of these schemes. The exact evaluation of this probability is very complex and inefficient from the computational point of view, a widely used alternative is the use of union bound of error probability, because of its easy implementation and computational produce bounds that converge quickly. Since it is the union bound, it should use to expurge some elements of distance spectrum to obtain a tight bound. The main contribution of this work is that the listing proposal is carried out from the puncturing at the level of symbol rather than bit-level as in most works of literature. The main reason for using the symbol level puncturing lies in the fact that the enummerating function of the turbo scheme is obtained directly from complex sequences of signals through the trellis and not indirectly from the binary sequences that require further binary to complex mapping, as proposed by previous works. Thus, algorithms can be applied through matrix from the adjacency matrix, which is obtained by calculating the distances of the complex sequences of the trellis. This work also presents two matrix algorithms for state reduction and the evaluation of the transfer function of this. The results presented in comparisons of the bounds obtained using the proposed technique with some turbo codes of the literature corroborate the proposition of this paper that the expurgated bounds obtained are quite tight and matrix algorithms are easily implemented in any programming software language

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past 50 years, large efforts have been made toward the understanding of the stellar evolution. In the observational context, large sets of precise measurements of projected rotational velocity were produced, in particular by the Natal and Geneva groups. From these data, it is now possible to establish the behavior of stellar rotation from the turnoff to the red giant branch. In addition, these data have shown the role of tidal effects on stellar rotation in close binary systems. Nevertheless, relatively little attention has been paid to theoretical studies on the evolution of rotation along the HR Diagram, a topic itself directly associated to the evolution of the stars. Basically, there are two reasons for such a fact, (i) spherical symmetry is not assumed, what leads to a substantial increase in the numerical complexity of equations and (ii) non rotating models have been very successful in explaining relevant observational data, including the mass-luminosity relation and chemical abundances. In spite of these facts, it is clear that considerable work remains to be done on the role of rotation in the later stages of the evolution, where clear disagreements arise from confrontations between theoretical predictions and observations. In the present work we study the evolutionary behavior of stellar rotation along the HR Diagram, taking into account constraint conditions issued from recent observational survey of rotational velocity carried out with high precision procedures and new evolutionary codes