2 resultados para Barlow, George, b. 1847.
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Pygmalion (1913), by George Bernard Shaw (1856-1950), has many studies in literary criticism. However, this study brings a new interpretation to Shaw s play based on Harold Bloom s theory and methodology, that is, the anxiety of influence and the dialectic of revisionism. Through the analysis of poetic influence and the dialectic of love, we can see that Pygmalion represents an apophrades in relation to William Shakespeare s The Taming of the Shrew (1593) and Ovid s myth of Pygmalion and Galatea in Metamorphosis (c. 14), which creates a family romance between the three stories. Shaw s play surpasses The Taming of the Shrew when it shows the possibility of the relation between this parent poem and Ovid s myth, which it is also its parent poem, and because it represents a strong misreading of Shakespeare s play as well as of Ovid s myth.
Resumo:
The so-called gravitomagnetic field arised as an old conjecture that currents of matter (no charges) would produce gravitational effects similar to those produced by electric currents in electromagnetism. Hans Thirring in 1918, using the weak field approximation to the Einsteins field equations, deduced that a slowly rotating massive shell drags the inertial frames in the direction of its rotation. In the same year, Joseph Lense applied to astronomy the calculations of Thirring. Later, that effect came to be known as the Lense- Thirring effect. Along with the de Sitter effect, those phenomena were recently tested by a gyroscope in orbit around the Earth, as proposed by George E. Pugh in 1959 and Leonard I. Schiff in 1960. In this dissertation, we study the gravitational effects associated with the rotation of massive bodies in the light of the Einsteins General Theory of Relativity. With that finality, we develop the weak field approximation to General Relativity and obtain the various associated gravitational effects: gravitomagnetic time-delay, de Sitter effect (geodesic precession) and the Lense-Thirring effect (drag of inertial frames). We discus the measures of the Lense-Thirring effect done by LAGEOS Satellite (Laser Geodynamics Satellite) and the Gravity Probe B - GPB - mission. The GPB satellite was launched into orbit around the Earth at an altitude of 642 km by NASA in 2004. Results presented in May 2011 clearly show the existence of the Lense-Thirring effect- a drag of inertial frames of 37:2 7:2 mas/year (mas = milliarcsec)- and de Sitter effect - a geodesic precession of 6; 601:8 18:3 mas/year- measured with an accuracy of 19 % and of 0.28 % respectively (1 mas = 4:84810��9 radian). These results are in a good agreement with the General Relativity predictions of 41 mas/year for the Lense-Thirring effect and 6,606.1 mas/year for the de Sitter effect.