2 resultados para Bandpass

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work consists in the development of a theoretical and numerical analysis for frequency selective surfaces (FSS) structures with conducting patch elements, such as rectangular patches, thin dipoles and cross dipoles, on anisotropic dielectric substrates. The analysis is developed for millimeter wave band applications. The analytical formulation is developed in the spectral domain, by using a rigorous technique known as equivalent transmission line method, or immitance approach. The numerical analysis is completed through the use of the Galerkin's technique in the Fourier transform domain, using entire-domain basis functions. In the last decades, several sophisticated analytical techniques have been developed for FSS structure applications. Within these applications, it can be emphasized the use of FSS structures on reflecting antennas and bandpass radomes. In the analysis, the scattered fields of the FSS geometry are related to the surface induced currents on the conducting patches. After the formulation of the scattering problem, the numerical solution is obtained by using the moment method. The choice of the basis functions plays a very important role in the numerical efficiency of the numerical method, once they should provide a very good approximation to the real current distributions on the FSS analyzed structure. Thereafter, the dyadic Green's function components are obtained in order to evaluate the basis functions unknown coefficients. To accomplish that, the Galerkin's numerical technique is used. Completing the formulation, the incident fields are determined through the incident potential, and as a consequence the FSS transmission and reflection characteristics are determined, as function of the resonant frequency and structural parameters. The main objective of this work was to analyze FSS structures with conducting patch elements, such as thin dipoles, cross dipoles and rectangular patches, on anisotropic dielectric substrates, for high frequency applications. Therefore, numerical results for the FSS structure main characteristics were obtained in the millimeter wave bando Some of these FSS characteristics are the resonant

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work shows a theoretical analysis together with numerical and experimental results of transmission characteristics from the microstrip bandpass filters with different geometries. These filters are built over isotropic dielectric substrates. The numerical analysis is made by specifical commercial softwares, like Ansoft Designer and Agilent Advanced Design System (ADS). In addition to these tools, a Matlab Script was built to analyze the filters through the Finite-Difference Time-Domain (FDTD) method. The filters project focused the development of the first stage of filtering in the ITASAT s Transponder receptor, and its integration with the others systems. Some microstrip filters architectures have been studied, aiming the viability of implementation and suitable practical application for the purposes of the ITASAT Project due to its lowspace occupation in the lower UHF frequencies. The ITASAT project is a Universityexperimental project which will build a satellite to integrate the Brazilian Data Collect System s satellite constellation, with efforts of many Brazilian institutes, like for example AEB (Brazilian Spatial Agency), ITA (Technological Institute of Aeronautics), INPE/CRN (National Institute of Spatial Researches/Northeastern Regional Center) and UFRN (Federal University of Rio Grande do Norte). Comparisons were made between numerical and experimental results of all filters, where good agreements could be noticed, reaching the most of the objectives. Also, post-work improvements were suggested.