3 resultados para Band 3

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal and helical elements structures in planar microstrip. In particular, the frequency selective surfaces (FSSs) had changed its conventional elements to fractal and helical formats. The dielectric substrate used was fiberglass (FR-4) and has a thickness of 1.5 mm, a relative permittivity 4.4 and tangent loss equal to 0.02. For FSSs, was adopting the Dürer’s fractal geometry and helical geometry. To make the measurements, we used two antennas horns in direct line of sight, connected by coaxial cable to the vector network analyzer. Some prototypes were select for built and measured. From preliminary results, it was aimed to find practical applications for structures from the cascading between them. For FSSs with Dürer’s fractal elements was observed behavior provided by the multiband fractal geometry, while the bandwidth has become narrow as the level of iteration fractal increased, making it a more selective frequency with a higher quality factor. A parametric analysis allowed the analysis of the variation of the air layer between them. The cascading between fractal elements structure were considered, presented a tri-band behavior for certain values of the layer of air between them, and find applications in the licensed 2.5GHz band (2.3-2.7) and 3.5GHz band (3.3-3.8). For FSSs with helical elements, six structures were considered, namely H0, H1, H2, H3, H4 and H5. The electromagnetic behavior of them was analyzed separately and cascaded. From preliminary results obtained from the separate analysis of structures, including the cascade, the higher the bandwidth, in that the thickness of the air layer increases. In order to find practical applications for helical structures cascaded, the helical elements structure has been cascaded find applications in the X-band (8.0-12.0) and unlicensed band (5.25-5.85). For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft Designer and a vector network analyzer, Agilent N5230A model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The telecommunications industry has experienced recent changes, due to increasing quest for access to digital services for data, video and multimedia, especially using the mobile phone networks. Recently in Brazil, mobile operators are upgrading their networks to third generations systems (3G) providing to users broadband services such as video conferencing, Internet, digital TV and more. These new networks that provides mobility and high data rates has allowed the development of new market concepts. Currently the market is focused on the expansion of WiMAX technology, which is gaining increasingly the market for mobile voice and data. In Brazil, the commercial interest for this technology appears to the first award of licenses in the 3.5 GHz band. In February 2003 ANATEL held the 003/2002/SPV-ANATEL bidding, where it offered blocks of frequencies in the range of 3.5 GHz. The enterprises who purchased blocks of frequency were: Embratel, Brazil Telecom (Vant), Grupo Sinos, Neovia and WKVE, each one with operations spread in some regions of Brazil. For this and other wireless communications systems are implemented effectively, many efforts have been invested in attempts to developing simulation methods for coverage prediction that is close to reality as much as possible so that they may become believers and indispensable tools to design wireless communications systems. In this work wasm developed a genetic algorithm (GA's) that is able to optimize the models for predicting propagation loss at applicable frequency range of 3.5 GHz, thus enabling an estimate of the signal closer to reality to avoid significant errors in planning and implementation a system of wireless communication

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl-  d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).