11 resultados para Bamboo Mats

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10–15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ∼10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance the duration of memory contents learned in school.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O controle sobre os processos erosivos é uma necessidade constatada em vários segmentos da engenharia. A movimentação de terra necessária para a execução de taludes rodoviários, por exemplo, pode resultar em taludes de corte ou aterro vulneráveis à erosão superficial. Dentre as alternativas tecnológicas para controle de erosão a utilização de geossintéticos se apresenta como uma solução potencial. A referida aplicação encontra-se em amplo desenvolvimento em alguns países como, por exemplo, nos EUA. No Brasil, a especificação de geossintéticos para controle de erosão é limitada pela ausência de caracterização desses produtos e de normas nacionais, sendo a única fonte técnica de informação, os catálogos dos fabricantes. Neste contexto, o objetivo deste trabalho é construir um equipamento e desenvolver métodos de ensaio para caracterização e avaliação de geossintéticos utilizados no controle de erosão superficial, com base na ASTM D7101. Além de um simulador de chuvas, o equipamento é composto por uma bancada de testes formada por: rampa de escoamento, mesa de suporte e núcleos de solo. Utilizando a bancada construída, foram realizados ensaios para avaliar o funcionamento do equipamento e o desempenho de uma geomanta na redução da taxa de erosão superficial. Os ensaios foram realizados com intensidades de precipitação de 100 ± 4mm/h e 150 ± 4mm/h, durante 30 minutos, com intervalo de leitura de 5 minutos. Os resultados obtidos nos ensaios sem a presença da geomanta mostraram uma perda de solo acentuada durante as chuvas simuladas, com uma iv tendência de crescimento linear da perda de solo acumulada em função do tempo de ensaio. Nos ensaios realizados com a presença da geomanta observou-se a ação de proteção do geossintético com uma redução da ordem de 90% da perda de solo acumulada para todas as intensidades de chuvas utilizadas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand in the use of composite materials necessitates a better understanding of its behavior related to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. Within these project conditions are highlighted the presence of geometrical discontinuities in the area of cross and longitudinal sections of structural elements and environmental conditions of work like UV radiation, moisture, heat, leading to a decrease in final mechanical response of the material. In this sense, this thesis aims to develop studies detailed (experimental and semi-empirical models) the effects caused by the presence of geometric discontinuity, more specifically, a central hole in the longitudinal section (with reduced cross section) and the influence of accelerated environmental aging on the mechanical properties and fracture mechanism of FGRP composite laminates under the action of uniaxial tensile loads. Studies on morphological behavior and structural degradation of composite laminates are performed by macroscopic and microscopic analysis of affected surfaces, in addition to evaluation by the Measurement technique for mass variation (TMVM). The accelerated environmental aging conditions are simulated by aging chamber. To study the simultaneous influence of aging/geometric discontinuity in the mechanical properties of composite laminates, a semiempirical model is proposed and called IE/FCPM Model. For the stress concentration due to the central hole, an analisys by failures criteria were performed by Average-Stress Criterion (ASC) and Point-Stress Criterion (PSC). Two polymeric composite laminates, manufactured industrially were studied: the first is only reinforced by short mats of fiberglass-E (LM) and the second where the reinforced by glass fiber/E comes in the form of bidirectional fabric (LT). In the conception configurations of laminates the anisotropy is crucial to the final mechanical response of the same. Finally, a comparative study of all parameters was performed for a better understanding of the results. How conclusive study, the characteristics of the final fracture of the laminate under all conditions that they were subjected, were analyzed. These analyzes were made at the macroscopic level (scanner) microscope (optical and scanning electron). At the end of the analyzes, it was observed that the degradation process occurs similarly for each composite researched, however, the LM composite compared to composite LT (configurations LT 0/90º and LT ±45º) proved to be more susceptible to loss of mechanical properties in both regarding with the central hole as well to accelerated environmental aging

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present work, three composites with distinct reinforcements (polyester, modal e polyester + modal), all if a unsaturated orthophthalic polyester resin as matrix were used, in order to conduct a comparative study by mechanical tests and water absorption. The fibre mats were prepared in a mat preparatory by immersion developed in the Textile Engineering Laboratory. The composites were manufactured using a closed mould process by compression using an unsaturated orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as an initiator. In each composite twelve samples with the dimensions of 150x25x3 mm were cut randomly for the mechanical analysis (tension x extension, three points bending and water absorption and Scanning Electron Micsroscopy). The mechanical tests were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN . All the analyses were carried out according to the ASTM norms. The resultant samples from the mechanical analysis were subjected for the Scanning Electron Microscopy analysis. Based on the results obtained, it was observed that the reinforced composite with two fibres (modal + polyester) presented better results in comparison to the other two composites both in the tension/extension as well on the three point bending tests. In the water absorption test, it was possible to observe an equilibrium in the water absorption by the modal and polyester composite, due to the union of the two fibres. In the SEM images, the regions of rupture in the composites as well as the adsorption between the fiber and the matrix could be observed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work the use of coconut fiber (coir) and bamboo shafts as reinforcement of soil-cement was studied, in order to obtain an alternative material to make stakes for fences in rural properties. The main objective was to study the effect of the addition of reinforcement to the soil-cement matrix. The effect of humidity on the mechanical properties was also analyzed. The soil-cement mortar was composed by a mixture, in equal parts, of soil and river sand, 14% in weight of cement and 10 % in weight of water. As reinforcement, different combinations of (a) coconut fiber with 15 mm mean length (0,3 %, 0,6 % and 1,2 % in weight) and (b) bamboo shafts, also in crescent quantities (2, 4 and 8 shafts per specimen) were used. For each combination 6 specimens were made and these were submitted to three point flexural test after 28 days of cure. In order to evaluate the effect of humidity, 1 specimen from each of the coconut fiber reinforced combination was immersed in water 24 hours prior to flexural test. The results of the tests carried out indicated that the addition of the reinforcement affected negatively the mechanical resistance and, on the other hand, increased the tenacity and the ductility of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The constant search for sustainable alternatives has earned great effort of researchers in research and obtaining new materials, encouraging the rise of eco-friendly productive development and providing simple and practical solutions to economic profitability. In this sense, the use of materials derived from natural renewable sources, vegetables, has great potential applicability to sustainable development. As alternative materials plant fibers can be applied to production of a range of composite materials easing the use of materials derived from non-renewable this thesis were sisal mats used for achieving a composite matrix having as one orthophthalic polyester resin. The webs were subjected to surface treatment in boiling water for 15 minutes. The webs of sisal fibers used were, respectively, 5%, 10% and 15% of the composite weight. The composite was obtained and characterized mechanically and thermally to the chosen formulations. several plates of the composite to obtain the body of evidence for the characterization tests complying with the relevant rules were made. The obtained composites showed strength tensile and bending lower than the array, so it can be used where are required low load requests. The most significant result of the composite studied given to the impact energy absorption, far superior to the matrix used. Other properties were highlighted in oil absorption, and density. It proved the feasibility of obtaining the composite for the three formulations studied C5, C10 and C15 being the most feasible to C10. To demonstrate the feasibility of using composite were made a wall clock, a bench, a chair and a shelf, low mechanical stress structures. It was concluded that the sisal rugs exercised the load function in the composite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sleep helps the consolidation of declarative memories in the laboratory, but the pro-mnemonic effect of daytime naps in schools is yet to be fully characterized. While a few studies indicate that sleep can indeed benefit school learning, it remains unclear how best to use it. Here we set out to evaluate the influence of daytime naps on the duration of declarative memories learned in school by students of 10–15 years old. A total of 584 students from 6th grade were investigated. Students within a regular classroom were exposed to a 15-min lecture on new declarative contents, absent from the standard curriculum for this age group. The students were then randomly sorted into nap and non-nap groups. Students in the nap group were conducted to a quiet room with mats, received sleep masks and were invited to sleep. At the same time, students in the non-nap group attended regular school classes given by their usual teacher (Experiment I), or English classes given by another experimenter (Experiment II). These 2 versions of the study differed in a number of ways. In Experiment I (n = 371), students were pre-tested on lecture-related contents before the lecture, were invited to nap for up to 2 h, and after 1, 2, or 5 days received surprise tests with similar content but different wording and question order. In Experiment II (n = 213), students were invited to nap for up to 50 min (duration of a regular class); surprise tests were applied immediately after the lecture, and repeated after 5, 30, or 110 days. Experiment I showed a significant ∼10% gain in test scores for both nap and non-nap groups 1 day after learning, in comparison with pre-test scores. This gain was sustained in the nap group after 2 and 5 days, but in the non-nap group it decayed completely after 5 days. In Experiment II, the nap group showed significantly higher scores than the non-nap group at all times tested, thus precluding specific conclusions. The results suggest that sleep can be used to enhance the duration of memory contents learned in school.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation