18 resultados para Balneario de Baranda (Burgos).

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(methyl methacrylate)/clay nanocomposites were prepared by melt mixing using a montmorillonite-rich clay (MMT). The clay in natura was treated with acrylic acid to facilitate the dispersion in the polymer matrix. A masterbatch of PMMA/clay was prepared and combined with the pure PMMA and then subjected to extrusion process using singlescrew and twin-screw extruders followed by injection. Nanocomposites were processed with clay contents of 1, 3, 5 and 8 wt.%. The effect of shear processing on the morphology of the nanocomposites was evaluated by XRD, SEM and TEM. Thermal and mechanical properties of the nanocomposites were investigated through TGA, DSC, HDT, VICAT, tensile and impact tests, to evaluate the effect of the addition of clay to the PMMA matrix. Flammability tests were also conducted to investigate the effect of the addition of clay on the flame retardation properties. SEM images of the nanocomposites indicated the presence of clay agglomerates, which resulted in the reduction of properties such as thermal stability, mechanical strength and impact resistance, and increased the rate of burning for materials processed by both extrusion routes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently new polymeric materials have been developed to replace other of traditionally materials classes. The use of dyes allows to expand and to diversify the applications in the polymeric materials development. In this work the behavior and ability of azo dyes Disperse Blue 79 (DB79) and Disperse Red 73 (DR73) on poly(methyl methacrylate) (PMMA) were studied. Two types of mixtures were used in the production of masterbatches: 1) rheometer 2) solution. Processing by extrusion-blow molding of PMMA was carried out in order to evaluate the applications of polymeric films. Thermal analysis were performed by thermogravimetry to evaluate polymer and azo dyes thermal stability. Colorimetric analysis were obtained through monitoring the spectral variations associated with sys/trans/anti azo dyes isomerization process Colorimetric data were treated and evaluated in accordance to the color system RGB and CIEL*ab, by monitoring the color change as function of time. Mechanical properties, characterized by tensile tests, were evaluated and correlated with the presence and content of azo dyes in the samples. Analyses by scanning electronic microscopy (SEM) were performed on the surfaces of samples to check the azo dye dispersion after the mixing process. It was concluded that the production of PMMA/azo dyes is possible and feasible, and the mixtures produced had synergy of properties for use in various applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammography is a diagnostic imaging method in which interpretation depends on knowledge of radiological aspects as well as the clinical exam and pathophysiology of breast diseases. In this work a mammography phantom was developed to be used for training in the operation of mammographic x-ray equipment, image quality evaluation, self-examination and clinical examination of palpation. Polyurethane was used for the production of the phantoms for its physical and chemical properties and because it is one of the components normally used in prostheses. According to the range of flexibility of the polyurethane, it was possible to simulate breasts with higher or lower amount of adipose tissue. Pathologies such as areolar necrosis and tissue rejection due to surgery reconstruction after partial mastectomy were also simulated. Calcifications and nodules were simulated using the following materials: polyethylene, poly (methyl methacrylate), polyamide, polyurethane and poly (dimethyl silicone). Among these, polyethylene was able to simulate characteristics of calcification as well as breast nodules. The results from mammographic techniques used in this paper for the evaluation of the phantoms are in agreement with data found in the literature. The image analyses of four phantoms indicated significant similarities with the human skin texture and the female breast parenchyma. It was possible to detect in the radiographic images produced regions of high and low radiographic optical density, which are characteristic of breasts with regions of different amount of adipose tissue. The stiffnesses of breast phantoms were adjusted according to the formulation of the polyurethane which enabled the production of phantoms with distinct radiographic features and texture similar to human female breast parenchyma. Clinical palpation exam of the phantoms developed in this work indicated characteristics similar to human breast in skin texture, areolar region and parenchyma

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently the search for new materials with properties suitable for specific applications has increased the number of researches that aim to address market needs. The poly (methyl methacrylate) (PMMA) is one of the most important polymers of the family of polyacrylates and polymethacrylates, especially for its unique optical properties and weathering resistance, and exceptional hardness and gloss. The development of polymer composites by the addition of inorganic fillers to the PMMA matrix increases the potential use of this polymer in various fields of application. The most commonly used inorganic fillers are particles of silica (SiO2), modified clays, graphite and carbon nanotubes. The main objective of this work is the development of PMMA/SiO2 composites at different concentrations of SiO2, for new applications as engineering plastics. The composites were produced by extrusion of tubular film, and obtained via solution for application to commercial PMMA plates, and also by injection molding, for improved the abrasion and scratch resistance of PMMA without compromising transparency. The effects of the addition of silica particles in the polymer matrix properties were evaluated by the maximum tensile strength, hardness, abrasion and scratch resistance, in addition to preliminary characterization by torque rheometry and melt flow rate. The results indicated that it is possible to use silica particles in a PMMA matrix, and a higher silica concentration produced an increase of the abrasion and scratch resistance, hardness, and reduced tensile strength

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis aims to analyze the ergonomic and functional aspects of the motorcycle patrolmen tactical vest and make a contribution to improve their technical and tactical characteristics reconciling pleasantness function, improving working conditions of policeman. The start point of this case study was the following hypothesis : The start point of this case study was the following hypothesis: once the policemen prepare their own tactical vests with layouts created by them. So, if someone observes these layouts, s/he will have an understanding of use of those devices and artifacts questions both positive, and negative. This hypothesis was confirmed by the results, considering that it was possible to understand the use of the tactic vests by means of the Policemen s opinion on issues recognized by themselves. It was also possible to understand that users perform interventions, based on their own inventive or learned from the experience of other policemen

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Materials known as technical textiles can be defined as structures designed and developed to meet specific functional requirements of various industry sectors, which is the case in automotive and aerospace industries, and other specific applications. Therefore, the purpose of this work presents the development and manufacture of polymer composite with isophthalic polyester resin. The reinforcement of the composite structure is a technical textile fabric made from high performance fibers, aramid (Kevlar 49) and glass fiber E. The fabrics are manufactured by the same method, with the aim of improving the tensile strength of the resulting polymer composite material. The fabrics, we developed some low grammage technical textile structures in laboratory scale and differentiated-composition type aramid (100%), hybrid 1 aramid fiber / glass (65/35%) and hybrid 2 aramid fiber / glass (85/15% ) for use as a reinforcing element in composite materials with unsaturated isophthalic polyester matrix. The polymer composites produced were tested in uniaxial tensile fracture surface and it´s evaluated by SEM. The purpose of this work characterize the performance of polymer composites prepared, identifying changes and based on resistance to strain corresponding to the mechanical behavior. The objectives are to verify the capability of using this reinforcement structure, along with the use of high performance fibers and resin in terms of workability and mechanical strength; verify the adherence of the fiber to the matrix and the fracture surface by electron microscopy scanning and determination of tensile strength by tensile test. The results indicate that, in a comparative study to the response of uniaxial tensile test for tensile strength of the composites and the efficiency of the low percentage of reinforcement element, being a technical textile fabric structure that features characteristic of lightness and low weight added in polymer composites

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of computing in class instigate the use of the Internet and websites as a content support in the teaching/leaning process. This kind of practice had challenged the students to read through eletronic hypertextual means. In that way, we re trying to undestand which strategies of reading and navigation the students of the second and third grade of highschool levels are using when reading electronic hypertexts from the www.ambientebrasil.com.br website. The research took place in the Escola Estadual Jerônimo Rosado in Mossoró RN. Our theoretical base was estructured on the digital Technology (electronic hypertext estructure and it s navigation modes), in applied linguistics (act of reading) and in cognition (interaction of the reader with the text and the use of reading strategies in the virtual computing enviroment). The applied methodology was the case analysis which was developed with the reunion of collected data through qualitative reseach questionaries, direct observations and video recording sessions. The research demonstrates that reader s ability in the act of navigating on virtual sites activates his/her reading strategies. Also shows how the semantic architecture of the hyperlinks can interfere directly over the strategies of reading and navigation in specific websites. Our research also intend to demonstrate that the student use his strategies of linear text reading when are not accustomed to use the reading through websites in a regular basis. The investigation concludes observing that the amount of hypertexts per pages and the inappropriate use of the multimedia elements were harmful to the reading fluency