13 resultados para Baccharis e Croton

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toxoplasmosis, a benign disease in normal healthy individuals, can have serious effects in pregnant women and immunocompromised patients. It is a parasitic disease caused by Toxoplasma gondii (Tg), an obligatory intracellular protozoan. The prophylactic and therapeutic arsenal against this parasite is very restricted. Thus, there is an ongoing search for novel drugs and therapeutic strategies. A promising alternative is a rational approach using medicinal plants. This study aimed to standardize methodologies for assessing the toxicological, antiproliferative, antioxidant, antiinflammatory and anti-Toxoplasma effects of Estragole and Thymol compounds isolated from species of plants (Lippia sidoides and Croton zenhtneri) commonly used in the Cariri region of Ceara State, Brazil. First we evaluated in vivo toxicity and conducted a pathological analysis of mice livers. In vivo antiinflammatory activity was assessed using air pouch and paw edema methods. Cytotoxicity assays were performed and antiproliferative, antioxidant and nitric oxide production analyzed. Anti-Toxoplasma activity was evaluated in a congenital experimental model with varying stages of maternal infection using the ME-49 strain and a non- congenital model by using ME-49 and RH strains. The results suggest low to moderate toxicity for both compounds. Thymol was more toxic in vivo and in vitro, having greater pathological repercussion than Estragole. The compounds were inactive for antiproliferative activity. Thymol showed better antioxidant activity, while Estragole stimulated nitric oxide production in macrophages. Both showed significant antiinflammatory activity. In non-congenital Tg infection, both compounds were active only against the ME49 strain. In congenital infection, Estragole (oral route) improved the newborn weight of infected mothers compared with untreated controls. Subcutaneous administration of the two compounds increased the weight of offspring born to infected mothers compared with untreated controls. We concluded that Estragole and Thymol exhibit important biological and anti-Toxoplasma activities. Further studies are needed to elucidate the mechanism of action of these compounds and other possible activities not investigated in the present study

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this present work an ethnographic research was performed with 84 native medicinal specimens from the Litoral Norte Riograndense, from which two plants Cleome spinosa Jacq e Pavonia varians Moric were submitted to ethnobotanic, phytochemistry and pharmacologic investigations. Additionally, a phytopharmacological research of the medicinal specimen Croton cajucara Benth ( native plant of the Amazon region of Brazil) was improved. The obtained phytochemical results of the C. spinosa and P. varians showed the presence of flavonoids constituents, among other components. The two flavonoids (2S)-5-hydroxy-7,4 -dimethoxy-flavanone and 5,4 -dihydroxy-3,7,3 -trimethoxy-flavone were isolated from C. spinosa. The antioxidant activity of the hydroalcoholic extracts of C. spinosa and P. varians solubilized in the microemulsion systems SME-1 and SME-4, was evaluated in the DPPHmethod. The used SME systems [obtained with Tween 80: Span 20 (3:1) and isopropyl myristate (IPM)] improved the dissolution of those tested polar extracts, with higher efficacy to the SME-1 system (in which ethanol was included as cosurfactant). The CE50 values evidenced for P. varians were 114 [g/mL (SME-1) and 246 [g/mL (SME-4); for C. spinosa it was 224 [g/mL (SME-1) and 248 [g/mL (SME-4), being the system SME-1 more effective for both tested extracts. The hydroalcoholic extracts of P. varians (HAE-PV) was also submitted to pharmacological screening for antinociceptive activity in animal models. The oral administration of this extract (100, 300 and 1000 mg/kg) inhibited the acetic acid-induced writhing in mice. The higher inhibition (74%) was evidenced to the 1000 mg/kg administered dose. Its effect on the central nervous system (CNS) was investigated by tail flick and formalin-method and reveled that it has negligible antinociceptive action on the CNS. After taking consideration of HAE-PV interaction, Pavonia varians Moric could be used as a potent analgesic agent in case of peripheral algesia, without affecting the CNS. The phytochemical study of the stem bark of Croton cajucara Benth lead to the isolation of 19-nor-clerodanetype diterpenes, as well as to the separation of its fixed oil FO-CC. This non polar oil material reveled to be rich in sesquiterpenes and 19-nor-clerodanes components. The biologic effect of OF-CC was evaluated in the development in vitro of the fungis phytopatogens such as Fusarium oxysporum, Rhizoctonia solani and Sclerotium rolfsii. Significant inhibitory effect of the tested fungis (at 0,2 mg.mL-1 dosage) were comproved. A Mass Spectrometry study of clerodane-type diterpenes was developed in order to identify characteristic fragments on mass spectrometra of both clerodane and 19-nor-clerodane presenting an α,β-insaturated carbonyl moiety at ring A of the decalin-system. For that study, mass spectroscopy data were analysed for 19-nor-clerodanes [trans-dehydrocrotonin (DCTN), trans-crotonin (CTN), cis-cajucarin B (c-CJC-B), and cajucarinolide (CJCR)] and for clerodanes [isosacacarin (ISCR) and transcajucarin A (t-CJC-A)] obtained from the stem bark of C. cajucara, and also clerodane-type from other species. The trans-junction of the enone-system clerodanes was clear correlated with the presence of the characteristic ions at m/z 95, 121 e 205. Meanwhile, the characteristics ions at m/z 122 e 124 were correlated to cis-junction. The trans-junction of the enone-system 19-nor-clerodanes showed characteristics ions at m/z 161, 134 e 121. This study could be successful employed for identification of clerodane constituents from other specimens without any additional spectroscopic analyses, as well as a previously phytochemical analyzes in clerodane project search

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the new drugs launched into the market since 1980, up to 30% of them belong to the class of natural products or they have semisynthetic origin. Between 40-70% of the new chemical entities (or lead compounds) possess poor water solubility, which may impair their commercial use. An alternative for administration of poorly water-soluble drugs is their vehiculation into drug delivery systems like micelles, microemulsions, nanoparticles, liposomes, and cyclodextrin systems. In this work, microemulsion-based drug delivery systems were obtained using pharmaceutically acceptable components: a mixture Tween 80 and Span 20 in ratio 3:1 as surfactant, isopropyl mirystate or oleic acid as oil, bidistilled water, and ethanol, in some formulations, as cosurfactants. Self-Microemulsifying Drug Delivery Systems (SMEDDS) were also obtained using propylene glycol or sorbitol as cosurfactant. All formulations were characterized for rheological behavior, droplet size and electrical conductivity. The bioactive natural product trans-dehydrocrotonin, as well some extracts and fractions from Croton cajucara Benth (Euphorbiaceae), Anacardium occidentale L. (Anacardiaceae) e Phyllanthus amarus Schum. & Thonn. (Euphorbiaceae) specimens, were satisfactorily solubilized into microemulsions formulations. Meanwhile, two other natural products from Croton cajucara, trans-crotonin and acetyl aleuritolic acid, showed poor solubility in these formulations. The evaluation of the antioxidant capacity, by DPPH method, of plant extracts loaded into microemulsions evidenced the antioxidant activity of Phyllanthus amarus and Anacardium occidentale extracts. For Phyllanthus amarus extract, the use of microemulsions duplicated its antioxidant efficiency. A hydroalcoholic extract from Croton cajucara incorporated into a SMEDDS formulation showed bacteriostatic activity against colonies of Bacillus cereus and Escherichia coli bacteria. Additionally, Molecular Dynamics simulations were performed using micellar systems, for drug delivery systems, containing sugar-based surfactants, N-dodecylamino-1-deoxylactitol and N-dodecyl-D-lactosylamine. The computational simulations indicated that micellization process for N-dodecylamino-1- deoxylactitol is more favorable than N-dodecyl-D-lactosylamine system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it were developed synthetic and theoretical studies for clerodane-type diterpenes obtained from Croton cajucara Benth which represents one of the most important medicinal plant of the Brazil amazon region. Specifically, the majoritary biocompound 19-nor-clerodane trans-dehydrocrotonin (t-DCTN) isolated from the bark of this Croton, was used as target molecule. Semi-synthetic derivatives were obtained from t-DCTN by using the followed synthetic procedures: 1) catalytic reduction with H2, 2) reduction using NaBH4 and 3) reduction using NaBH4/CeCl3. The semi-synthetic 19-nor-furan-clerodane alcohol-type derivatives were denominated such as t-CTN, tCTN-OL, t-CTN-OL, t-DCTN-OL, t-DCTN-OL, being all of them characterized by NMR. The furan-clerodane alcohol derivatives t-CTN-OL and tCTN-OL were obtained form the semi-synthetic t-CTN, which can be isolated from the bark of C. cajucara. A theoretical protocol (DFT/B3LYP) involving the prevision of geometric and magnetic properties such as bond length and angles, as well as chemical shifts and coupling constants, were developed for the target t-DCTN in which was correlated NMR theoretical data with structural data, with satisfactory correlation with NMR experimental data (coefficients ranging from 0.97 and 0.99) and X-ray diffraction data. This theoretical methodology was also validated for all semi-synthetic derivatives described in this work. In addition, topological data from the Quantum Theory of Atoms in Molecules (QTAIM) showed the presence of H-H and (C)O--H(C) intramolecular stabilized interactions types for t-DCTN e t-CTN, contributing to the understanding of the different reactivity of this clerodanes in the presence of NaBH4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, among the corrosion inhibitors surfactants are the most commonly used compounds, because they are significantly effective by forming protective films on anodic and cathodic areas. In this study, microemulsions containing he biodegradable saponified coconut oil as surfactant (SME-OCS) was used as green corrosion inhibitors. With this purpose, methanolic extracts of Ixora coccinea Linn (IC) and a polar fraction rich in alkaloids (FA) obtained from Croton cajucara Benth solubilized in the SME-OCS system were examined in the presence of AISI 1020 carbon steel, in saline solution (NaCl 3,5 %). The efficiency of corrosion inhibition of IC and FA were evaluated in the following microemulsions: SME-OCS-IC and SME-OCS-FA. The microemulsion system SME-OCS in the presence and absence of IC and FA was assessed by measurements of weight loss and the electrochemical method of polarization resistance, with variation in the concentration of IC and FA (50 - 400 ppm), showing significant results of corrosion inhibition (83,6 % SME-OCS; 92,2 % SME-OCS-FA; and 95,3 % SME-OCS-IC)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria, also popularly known as maleita , intermittent fever, paludism, impaludism, third fever or fourth fever, is an acute infectious febrile disease, which, in human beings, is caused by four species: Plasmodium falciparum, P. vivax, P. malariae and P. ovale. Malaria, one of the main infectious diseases in the world, is the most important parasitoses, with 250 million annual cases and more than 1 million deaths per year, mainly in children younger than live years of age. The prophylactic and therapeutic arsenal against malaria is quite restricted, since all the antimalarials currently in use have some limitation. Many plant species belonging to several families have been tested in vivo, using the murine experimental model Plasmodium berghei or in vitro against P. falciparum, and this search has been directed toward plants with antithermal, antimalarial or antiinflammatory properties used in popular Brazilian bolk medicine. Studies assessing the biological activity of medicinal plant essential oils have revealed activities of interest, such as insecticidal, spasmolytic and antiplasmodic action. It has also been scientifically established that around 60% of essential oils have antifungal properties and that 35% exhibit antibacterial properties. In our investigation, essential oils were obtained from the species Vanillosmopsis arborea, Lippia sidoides and Croton zethneri which are found in the bioregion of Araripe-Ceará. The chemical composition of these essential oils was partially characterized and the presence of monoterpenes and sesquiterpenes. The acute toxicity of these oils was assessed in healthy mice at different doses applied on a single day and on four consecutive days, and in vitro cytotoxicity in HeLa and Raw cell lines was determined at different concentrations. The in vivo tests obtained lethal dose values of 7,1 mg/Kg (doses administered on a single day) and 1,8 mg/Kg (doses administered over four days) for 50% of the animals. In the in vitro tests, the inhibitory concentration for 50% of cell growth in Hela cell lines was 588 μg/mL (essential oil from C. zethneri after 48 h), from 340-555 μg/mL (essential oil from L. sidoides, after 24 and 48 h). The essential oil from V. arborea showed no cytotoxicity and none of the essential oils were cytotoxic in Raw cell lines. These data suggest a moderate toxicity in the essential XVIII oils under study, a finding that does not impede their testing in in vivo antimalarial assays. Was shown the antimalarial activity of the essential oils in mice infected with P. berghei was assessed. The three species showed antimalarial activity from 36%-57% for the essential oil from the stem of V. arborea; from 32%-82% for the essential oil from the leaves of L. sidoides and from 40%-70% of reduction for the essential oil from the leaves of C. zethneri. This is the first study showing evidence of antimalarial activity with these species from northeast Brazil. Further studies to isolate the active ingredients of these oils are needed to determine if a single active ingredient accounts for the antimalarial activity or if a complex integration of all the compounds present occurs, a situation reflected in their biological activity