6 resultados para BRAIN-STEM NEURONS

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

To the vertebrates, maintain body balance against the gravitational field and be able to orient themselves in the environment are fundamental aspects for survival, in which the participation of vestibular system is essential. As part of this system, the vestibular nuclear complex is the first central station that, by integrating many information (visual, proprioceptive), and the vestibular, assumes the lead role in maintaining balance. In this study, the vestibular nuclear complex was evaluated in relation to its cytoarchitecture and neurochemical content of cells and axon terminals, through the techniques of Nissl staining and immunohistochemistry for neuronal specific nuclear protein (NeuN), glutamate (Glu), substance P (SP), choline acetyltransferase (ChAT) (enzyme that synthesizes acetylcholine-Ach) and glutamic acid decarboxylase (GAD) (enzyme that synthesizes gamma-amino butyric acid-GABA). The common marmoset (Callithrix jacchus) was used as experimental animal, which is a small primate native from the Atlantic Forest in the Brazilian Northeast. As results, the Nissl technique, complemented by immunohistochemistry for NeuN allowed to delineate the vestibular nucleus superior, lateral, medial and inferior (or descending) in the brain of the common marmoset. Neurons and terminals immunoreactive to Glu and ChAT and only immunoreactive terminals to SP and GAD were seen in all nuclei, although in varying density. This study confirms the presence in the vestibular nuclei of the common marmoset, of Glu and SP in terminals, probably from the first order neurons of vestibular ganglion, and of GABA in terminals, presumably from Purkinge cells of the cerebellum. Second-order neurons of the vestibular nuclei seem to use Glu and Ach as neurotransmitters, judging by their expressive presence in the cell bodies of these nuclei in common marmosets, as reported in other species

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serotonin or 5-hydroxytryptamine (5-HT) is a substance found in many tissues of the body, including the nervous system acting as a neurotransmitter. Within the neuro-axis, the location of the majority of the 5-HT neurons is superimposed with raphe nuclei of the brain stem, in the median line or its vicinity, so that neuronal 5-HT can be considered a marker of the raphe nuclei. Serotonergic neurons are projected to almost all areas of the brain. Studies show the participation of serotonin in regulating the temperature, feeding behavior, sexual behavior, biological rhythms, sleep, locomotor function, learning, among others. The anatomy of these groups has been revised in many species, including mouse, rabbit, cat and primates, but never before in a bat species from South America. This study aimed to characterize the serotonergic clusters in the brain of the bat Artibeus planirostris through immunohistochemistry for serotonin. Seven adult bat males of Artibeus planirostris species (Microchiroptera, Mammalia) were used in this study. The animals were anesthetized, transcardially perfused and their brains were removed. Coronal sections of the frozen brain of bats were obtained in sliding microtome and subjected to immunohistochemistry for 5-HT. Delimit the caudal linear (CLi), dorsal (DR), median (MnR), paramedian (PMnR), pontine (PNR), magnus (MgR), pallidus (RPA) and obscurus (ROb) raphe nucleus, in addition to the groups B9 and rostral and caudal ventrolateral (RVL/CVL). The serotonergic groups of this kind of cheiroptera present morphology and cytoarchitecture relatively similar to that described in rodents and primates, confirming the phylogenetic stability of these cell clusters.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypothalamus is a diencephalic portion located around the third ventricle below the hypothalamic sulcus, limited by the optic chiasm, and by the mammillary bodies, acting as a center that integrates behavioral and homeostatic functions. Serotonin is a neurotransmitter produced in limited sites in the midbrain and brain stem, but is distributed throughout the central nervous system and has many functions, acting through specific receptors that are also distributed throughout the nervous system. Using immunohistochemical techniques, the aim of this study was to delineate the hypothalamic nuclei of the marmoset (Callithrix jacchus) and study the distribution of serotonin transporter and serotonin receptors in the hypothalamus of this species. We used the Nissl method to determine the cytoarchitecture of the hypothalamic nuclei, and immunohistochemistry to reveal the presence of NeuN as a method to determine the contours of the hypothalamic nuclei. As a result, we found serotonin containing fibers and terminals throughout the rostrocaudal extent of the hypothalamus, more concentrated in some nuclei, and even absent in some. Like serotonin, serotonin transporter was observed between pre-optic area and tuberal region of the hypothalamus, in densities and distribution similar to serotonin. The 5-HT1A and 5-HT1B receptors were found with minor differences among itselves regarding the disposition and intensity of staining.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuroscientists have a variety of perspectives with which to classify different parts of the brain. With the rise of genetic-based techniques such as optogenetics, it is increasingly important to identify whether a group of cells, defined by morphology, function or anatomical location possesses a distinct pattern of expression of one or more genetic promoters. This would allow for better ways to study of these genetically defined subpopulations of neurons. In this work, I present a theoretical discussion and threeexperimental studies in which this was the main question being addressed. Paper I discusses the issues involved in selecting a promoter to study structures and subpopulations in the Ventral Tegmental Area. Paper II characterizes a subpopulation of cells in the Ventral Tegmental Area that shares the expression of a promoter and is anatomically very restricted, and induces aversion when stimulated. Paper III utilizes a similar strategy to investigate a subpopulation in the subthalamic nucleus that expresses PITX2 and VGLUT2 which, when inactivated, causes hyperlocomotion. Paper IV exploits the fact that a previously identified group of cells in the ventral hippocampus expresses CHRNA2, and indicates that this population may be necessary and sufficient for the establishment of the theta rhythm (2-8 Hz) in the Local Field Potential of anesthetized mice. All of these studies were guided by the same strategy of characterizing and studying the role of a genetically defined subpopulation of cells, and they demonstrate the different ways in which this approach can generate new discoveries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three populations of neurons expressing the vesicular glutamate transporter 2 (Vglut2) were recently described in the A10 area of the mouse midbrain, of which two populations were shown to express the gene encoding, the rate-limiting enzyme for catecholamine synthesis, tyrosine hydroxylase (TH).One of these populations (‘‘TH– Vglut2 Class1’’) also expressed the dopamine transporter (DAT) gene while one did not ("TH–Vglut2 Class2"), and the remaining population did not express TH at all ("TH-Vglut2-only"). TH is known to be expressed by a promoter which shows two phases of activation, a transient one early during embryonal development, and a later one which gives rise to stable endogenous expression of the TH gene. The transient phase is, however, not specific to catecholaminergic neurons, a feature taken to advantage here as it enabled Vglut2 gene targeting within all three A10 populations expressing this gene, thus creating a new conditional knockout. These knockout mice showed impairment in spatial memory function. Electrophysiological analyses revealed a profound alteration of oscillatory activity in the CA3 region of the hippocampus. In addition to identifying a novel role for Vglut2 in hippocampus function, this study points to the need for improved genetic tools for targeting of the diversity of subpopulations of the A10 area