2 resultados para BLUE-LUMINESCENCE

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The general objective of this study was to contribute to the understanding of the chemical evolution of fluids that percolate through carbonate rocks of the Jandaíra Formation. The oxidation and reduction conditions in which grains, source and cement were formed was investigated using the cathodoluminescence technique (CL). The study area is located in the west part of the Potiguar Basin (Fazenda Belém field) and Rosário Ledge (Felipe Guerra municipality, State of Rio Grande do Norte, Brazil). The analysis of thin sections of carbonate rocks under CL revealed that grains (allochemical or not) and diagenetic products (micritization, dolomitization, neomorphism and cementation) exhibit since absence of luminescence the various luminescence colors (yellow, orange, red, brown, and blue) in a variety of intensities. As pure calcite shows dark blue luminescence, the occurrence of different luminescence colors in calcite crystals suggest one or more punctual crystal defects such as free electron, free space and impurity. The dyeing of thin sections with alizarin and potassium ferrocyanide revealed the absence of ferrous carbonate in the different lithotypes of Jandaíra Formation. Therefore, the different colors and intensities of CL observed in these rocks are probably caused by the presence of ion activators such as Mn2+ and is not an activator/inhibitor combination. In the same way, the absence of luminescence is very probably caused by the absence of activator ions and not due to the low concentration of inhibitor ions such as Fe2+. The incorporation of Mn2+ in the different members of the Jandaíra Formation must have been controlled by the redox state of the depositional environment and diagenesis. Therefore, it is possible that the luminescent members have been formed (e.g.,ooids) or have been modified (gastropod neomorphism) under reduction conditions in the depositional environments, in subsurface during the burial, or, in the case of Rosario Ledge samples , during the post-burial return to surface conditions. As regards the sudden changes from low to moderate and to strong luminescence, these features should indicate the precipitation of a fluid with chemical fluctuations, which formed the frequent zonations in the block cement of the Rosario Ledge samples. This study suggests that the different intensities and colors of CL should be correlated with the Mn2+ and Fe2+ contents, and stable isotopes of samples to determine the salinity, temperature, pH e Eh conditions during deposition