4 resultados para Azimuth

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this dissertation we studied the seismic activity in the São Caetano county, Pernambuco State, Northeastern Brazil, located near the Pernambuco Lineament. The Pernambuco Lineament is a one of Neoproterozoic continental-scale shear zones that deforms the Borborema province. The seismicity estudied occurred in a NE trending branch of Pernambuco Lineament. The seismic activity in São Caetano started in 2006 and in May 20th, 2006 a 4,0 mb earthquake hit there. This was the largest earthquake ever reported in Pernambuco State. This dissertation is the result of a campaign done in the period from Februay 1th 2007 to July 31 th 2007. In this campaign up to nine three-component digital seismographic stations were deployed and the collected data was used to determine hypocenters and focal mechanism. A total of 214 earthquakes, recorded at least by three stations, were analyzed. To determine hypocenters and time origin the HYPO71 program was used assuming a half-space model with parameters : VP (P-wave velocity) equal to 5.90 km/s and the ratio VP/VS 1.70, where VS is the S-wave velocity. The earthquakes hypocentral distribution was approximately 4 km long and agrees with the NE-SW direction of the Pernambuco Lineamento branch. Hypocentres depth range from 2 to 8 km. The composed focal mechanism was made from a group of 14 selected earthquakes. We try firstly to find the fault plane solution matching the polarity distribution at stations, using the FPFIT program. The result was 43 deg ± 15 deg for strike, 59 deg ± 9 deg for dip and -142 deg ± 15 deg for rake. We also fitted a plane using the hypocentral distribution to obtain the dip and azimuth of the hypocentral distribution. The results obtained by this fit were 58 deg for the azimuth, 55 deg for the dip and -155 deg for rake. This result shows a mechanism of a strike-slip dextral fault with a normal component. This dissertation shows, once more, that there is a good correlation between the seismic activity and geological features in the region near the Pernambuco Lineament and its NE branches

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tucunduba Dam, is west of Fortaleza, Ceará State. The seismic monitoring of the area, with an analogical station and seven digital stations, had beginning on June 11, 1997. The digital stations, operated from June to November 1997. The data collected in the period of digital monitoring was analyzed for determination of hypocenters, focal mechanisms, and shear-wave anisotropy analysis. For determination of hypocenters, it was possible to find an active zone of nearly 1 km in length, with depth between 4.5 and 5.2 km. A 60AZ/88SE fault plane was determined using the least-squares method and hypocenters of a selected set of 16 earthquakes recorded. Focal mechanisms were determined, in the composite fault plane solution, a strike-slip fault, trending nearly E-W, was found. Single fault plane solutions were obteined to some earthquakes presented mean values of 65 (azimuth), and 80 (dip). Shear-wave anisotropy was found in the data. Polarization directions and travel time delays, between S spliting waves, were determined. It was not possible to obtain any conclusion on the cause of the observed anisotropy. It is not clear if there is correlation between seismicity and mapped faults in the area, although the directions obtained starting from the hipocentros and focal mechanism are they are consistent with directions, observed in the area, photo, topographic and fractures directions observed in the area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it was performed a study to obtain parameters for an 1D regional velocity model for the Borborema Province, NE Brazil. It was used earthquakes occurred between 2001 and 2013 with magnitude greater than 2.9 mb either from epicentres determined from local seismic networks or by back azimuth determination, when possible. We chose seven events which occurred in the main seismic areas in the Borborema Province. The selected events were recorded in up to 74 seismic stations from the following networks: RSISNE, INCT-ET, João Câmara – RN, São Rafael – RN, Caruaru - PE, São Caetano - PE, Castanhão - CE, Santana do Acarau - CE, Taipu – RN e Sobral – CE, and the RCBR (IRIS/USGS—GSN). For the determination of the model parameters were inverted via a travel-time table and its fit. These model parameters were compared with other known model (global and regional) and have improved the epicentral determination. This final set of parameters model, we called MBB is laterally homogeneous with an upper crust at 11,45 km depth and total crustal thickness of 33,9 km. The P-wave velocity in the upper crust was estimated at 6.0 km/s and 6.64 km/s for it lower part. The P-wave velocity in the upper mantle we estimated at 8.21 km/s with an VP/VS ratio of approximately 1.74.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work it was performed a study to obtain parameters for an 1D regional velocity model for the Borborema Province, NE Brazil. It was used earthquakes occurred between 2001 and 2013 with magnitude greater than 2.9 mb either from epicentres determined from local seismic networks or by back azimuth determination, when possible. We chose seven events which occurred in the main seismic areas in the Borborema Province. The selected events were recorded in up to 74 seismic stations from the following networks: RSISNE, INCT-ET, João Câmara – RN, São Rafael – RN, Caruaru - PE, São Caetano - PE, Castanhão - CE, Santana do Acarau - CE, Taipu – RN e Sobral – CE, and the RCBR (IRIS/USGS—GSN). For the determination of the model parameters were inverted via a travel-time table and its fit. These model parameters were compared with other known model (global and regional) and have improved the epicentral determination. This final set of parameters model, we called MBB is laterally homogeneous with an upper crust at 11,45 km depth and total crustal thickness of 33,9 km. The P-wave velocity in the upper crust was estimated at 6.0 km/s and 6.64 km/s for it lower part. The P-wave velocity in the upper mantle we estimated at 8.21 km/s with an VP/VS ratio of approximately 1.74.