5 resultados para Automatic checkout equipment.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial-temporal dynamics of zooplankton in the Caravelas river estuary (Bahia, Brazil). The survey was conducted in order to describe the zooplankton community of the estuary Caravelas (Bahia, Brazil), to quantify and relate the patterns of horizontal and vertical transport with the type of tide (neap and spring) and tidal phase (flood and ebb). Zooplankton samples were collected with the aid of a suction pump (300L), filtered in plankton nets (300μm) and fixed in saline formalin 4%. Samples were collected at a fixed point (A1), near the mouth of the estuary, with samples taken at neap tides and spring tides during the dry and rainy seasons. Samples were collected for 13 hours, at intervals of 1 hour in 3 depths: surface, middle and bottom. Simultaneous collection of biological, we measured the current velocity, temperature and salinity of the water through CTD. In the laboratory, samples were selected for analysis in estereomicroscope, with 25 groups identified, with Copepoda getting the highest number of species. The 168 samples obtained from temporal samples were subsampled and processed on equipment ZooScan, with the aid of software ZooProcess at the end were generated 458.997 vingnettes. 8 taxa were identified automatically, with 16 classified as a semi-automatic. The group Copepoda, despite the limited taxonomic refinement ZooScan, obtained 2 genera and 1 species identified automatically. Among the seasons dry and wet groups Brachyura (zoea), Chaetognatha, and the Calanoid copepods (others), Temora spp., Oithona spp. and Euterpina acutifrons were those who had higher frequency of occurrence, appearing in more than 70% of the samples. Copepoda group showed the largest percentage of relative abundance in both seasons. There was no seasonal variation of total zooplankton, with an average density of 7826±4219 org.m-3 in the dry season, and 7959±3675 org.m-3 in the rainy season, neither between the types and phases of the tides, but seasonal differences were significant recorded for the main zooplankton groups. Vertical stratification was seen for the major zooplankton groups (Brachyura, Chaetognatha, Calanoida (other), Oithona spp, Temora spp. e Euterpina acutifrons). The scale of this stratification varied with the type (square or tide) and tidal phase (flood or ebb). The instantaneous transport was more influenced by current velocity, with higher values observed in spring tides to the total zooplankton, however, there was a variation of this pattern depending on the zooplankton group. According to the data import and export of total zooplankton, the outflow of organisms of the estuary was higher than the input. The results suggest that the estuary of Caravelas may influence the dynamics of organic matter to the adjacent coast, with possible consequences in National Marine Park of Abrolhos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Electrical Submersible Pumping is an artificial lift method for oil wells employed in onshore and offshore areas. The economic revenue of the petroleum production in a well depends on the oil flow and the availability of lifting equipment. The fewer the failures, the lower the revenue shortfall and costs to repair it. The frequency with which failures occur depends on the operating conditions to which the pumps are submitted. In high-productivity offshore wells monitoring is done by operators with engineering support 24h/day, which is not economically viable for the land areas. In this context, the automation of onshore wells has clear economic advantages. This work proposes a system capable of automatically control the operation of electrical submersible pumps, installed in oil wells, by an adjustment at the electric motor rotation based on signals provided by sensors installed on the surface and subsurface, keeping the pump operating within the recommended range, closest to the well s potential. Techniques are developed to estimate unmeasured variables, enabling the automation of wells that do not have all the required sensors. The automatic adjustment, according to an algorithm that runs on a programmable logic controller maintains the flow and submergence within acceptable parameters avoiding undesirable operating conditions, as the gas interference and high engine temperature, without need to resort to stopping the engine, which would reduce the its useful life. The control strategy described, based on modeling of physical phenomena and operational experience reported in literature, is materialized in terms of a fuzzy controller based on rules, and all generated information can be accompanied by a supervisory system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The progressing cavity pump artificial lift system, PCP, is a main lift system used in oil production industry. As this artificial lift application grows the knowledge of it s dynamics behavior, the application of automatic control and the developing of equipment selection design specialist systems are more useful. This work presents tools for dynamic analysis, control technics and a specialist system for selecting lift equipments for this artificial lift technology. The PCP artificial lift system consists of a progressing cavity pump installed downhole in the production tubing edge. The pump consists of two parts, a stator and a rotor, and is set in motion by the rotation of the rotor transmitted through a rod string installed in the tubing. The surface equipment generates and transmits the rotation to the rod string. First, is presented the developing of a complete mathematical dynamic model of PCP system. This model is simplified for use in several conditions, including steady state for sizing PCP equipments, like pump, rod string and drive head. This model is used to implement a computer simulator able to help in system analysis and to operates as a well with a controller and allows testing and developing of control algorithms. The next developing applies control technics to PCP system to optimize pumping velocity to achieve productivity and durability of downhole components. The mathematical model is linearized to apply conventional control technics including observability and controllability of the system and develop design rules for PI controller. Stability conditions are stated for operation point of the system. A fuzzy rule-based control system are developed from a PI controller using a inference machine based on Mandami operators. The fuzzy logic is applied to develop a specialist system that selects PCP equipments too. The developed technics to simulate and the linearized model was used in an actual well where a control system is installed. This control system consists of a pump intake pressure sensor, an industrial controller and a variable speed drive. The PI control was applied and fuzzy controller was applied to optimize simulated and actual well operation and the results was compared. The simulated and actual open loop response was compared to validate simulation. A case study was accomplished to validate equipment selection specialist system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this approach is to describe the design and construction of a low-cost automated water sampler prototype. In recent years, there is an increasing need on the use of automated equipments for hydro climatic variables to be use in urban and rural environments. Such devices are always used to provide measured information which is of crucial importance on the development of water resources strategies at watershed scale. Actually, many research and water public institutions have been using these kinds of equipments. In most of the cases, automated equipments are expensive and need to be imported, generating a situation of technologic dependency. The prototype is based on an electronic system which controls a peristaltic pump functioning, five solenoid valves and an ultrasonic sensor connected to a datalloger. An interface with the user allows communication with a PC, when the equipment functioning parameters can be provided. The equipment has a hydraulic module composed by a 12V peristaltic pump connected to a distribution circuit composed by five solenoid valves, one of them being used to clean the circuit before each sampling procedure. Samples are collected by four 1.95 polyethylene bottles. The sampler body was made of acrylic material, with a cylindrical shape, and dimensions 0.72 m and 0.38 m height and diameter, respectively. The weight of the equipment without samples is approximately 15 kg, which infers to its portability. The prototype development total cost budget was approximately US$ 1,560.00. Laboratory tests aimed to evaluate the equipment performance and functioning demonstrated satisfactory results