1 resultado para Asymptotically optimal policy
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Beamforming is a technique widely used in various fields. With the aid of an antenna array, the beamforming aims to minimize the contribution of unknown interferents directions, while capturing the desired signal in a given direction. In this thesis are proposed beamforming techniques using Reinforcement Learning (RL) through the Q-Learning algorithm in antennas array. One proposal is to use RL to find the optimal policy selection between the beamforming (BF) and power control (PC) in order to better leverage the individual characteristics of each of them for a certain amount of Signal to Interference plus noise Ration (SINR). Another proposal is to use RL to determine the optimal policy between blind beamforming algorithm of CMA (Constant Modulus Algorithm) and DD (Decision Direct) in multipath environments. Results from simulations showed that the RL technique could be effective in achieving na optimal of switching between different techniques.