6 resultados para Asphalt cement.

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents the incorporation of an industrial polymeric waste into a petroleum asphalt cement with penetration grade 50-60 (CAP 50-60). The main goal of this research is the development of a polymer-modified asphalt, with improvements in its physical properties, in order to obtain a more resistant material to the traffic loads. Furthermore, the use of this polymeric waste will result in economic and environmental benefits. The CAP 50-60 used in this research was kindly supplied by LUBNOR Lubrificantes e Derivados de Petróleo do Nordeste (produced in Fazenda Belém Aracati - Ceará) and the industrial polymeric waste was provided by a button manufacturer industry, located in Rio Grande do Norte state. This polymeric waste represents an environmental problem due to its difficulty in recycling and disposal, being necessary the payment by the industry to a landfill. The difficulty in its reuse is for being this material a termofixed polymer, as a result, the button chips resulting from the molding process cannot be employed for the same purpose. The first step in this research was the characterization of the polymeric waste, using Differential Scanning Calorimetry (DSC) Infrared spectroscopy (IR spectroscopy), and Thermogravimetric analysis (TGA). Based on the results, the material was classified as unsaturated polyester. After, laboratory experiments were accomplished seeking to incorporate the polymeric waste into the asphalt binder according to a 23 experimental factorial design, using as main factors: the polymer content (2%, 7% and 14%), the temperature of the mixture (140 and 180 oC) and the reaction time (20 and 60 minutes). The characterization of the polymer-modified asphalt was accomplished by traditional tests, such as: penetration, ring and ball softening point, viscosity, ductility and flash point temperature. The obtained results demonstrated that the addition of the polymeric waste into the asphalt binder modified some of its physical properties. However, this addition can be considered as a feasible alternative for the use of the polymeric waste, which is a serious environmental and technological problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the increase of asphalt milling services was also a significant increase in recycling services pavements. The techniques used today are basically physical processes in which the milled material is incorporated into new asphalt mixtures or executed on site, with the addition of virgin asphalt and rejuvenating agent. In this paper seeks to analyze the efficiency of extraction of CAP (Petroleum Asphalt Cement) mixtures from asphalt milling, using commercial solvents and microemulsions. The solvents were evaluated for their ability to solubilize asphalt using an extractor reflux-type apparatus. Pseudoternary diagrams were developed for the preparation of microemulsion O/W surfactant using a low-cost coconut oil saponified (OCS). Microemulsions were used to extract the CAP of asphalt through physicochemical process cold. Analysis was performed concentration of CAP in solution by spectroscopy. The data provided in the analysis of concentration by the absorbance of the solution as the basis for calculating the percentage of extraction and the mass flow of the CAP in the solution. The results showed that microemulsions prepared with low concentration of kerosene and butanol/OCS binary has high extraction power of CAP and its efficiency was higher than pure kerosene, reaching 95% rate of extraction

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The increasing demand for asphalt leads to the development of techniques that can improve the quality of products and increase the useful working life of pavements. Consequently, there is a growing application of asphalt emulsions, which are produced from a mixture of petroleum asphalt cement (CAP) with an aqueous phase. The main advantage of asphalt emulsions is its cold application, reducing energy costs. Conventional emulsions are obtained using asphalt, water, solvent, and additives. The modified asphalt emulsion is developed by adding a modifying agent to conventional emulsions. These modifiers can be natural fibers, waste polymers, nanomaterials. In this work modified asphalt emulsion were obtained using organoclays. First, it was prepared a conventional asphalt emulsion with the following mass proportion: 50% of 50/70 penetration grade CAP, 0.6% of additives and 3% of emulsifier, 20% of solvent and 26.4% of water. It was used bentonite and vermiculite (1% and 4%) to obtain the modified asphalt emulsion. Bentonite and vermiculite were added in its raw state and as an organoclay form and as an organoclay-acid form, resulting in 26 experimental runs. The methodology described by Qian et al. (2011), with modifications, was used to obtain the organoclay and the organoclay-acid form. infrared spectroscopy (IR)) were used to characterize the clays and nanoclays. The emulsions were prepared in a colloidal mill, using 30 minutes and 1 hour as mixing time. After, the emulsions were characterized. The following tests were performed, in accordance with the Brazilian specifications (DNER- 369/97): sieve analysis, Saybolt Furol viscosity, pH determination, density, settlement and storage stability, residue by evaporation, and penetration of residue. Finally, it can be concluded that the use of nanoclays as asphalt modifiers represent a viable alternative to the road paving industry

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main objective of this research was the development and characterization of conventional and modified cationic asphalt emulsions. The asphalt emulsions were developed by using the Petroleum Asphalt Cement (CAP 50-70) from Fazenda Belém (Petrobras -Aracati-Ce). The first step in this research was the development of the oil phase (asphalt + solvent) and the aqueous phase (water + emulsifying agent + acid + additives), separately. During the experiments for the obtaining of the conventional asphalt emulsion, the concentration of each constituent was evaluated. For the obtaining of the oil phase, kerosene was used as solvent at 15 and 20 wt.%. For the development of the aqueous phase, the emulsifying agent was used at 0.3 and 3.0 wt.%, whereas the acid and the additive were set at 0.3 wt.%. The percentage of asphalt in the asphalt emulsion was varied in 50, 55, and 60 wt.% and the heating temperature was set at 120 °C. The aqueous phase in the asphalt emulsion was varied from 16.4 to 34.1 wt.% and the heating temperature was set at 60 °C. After the obtaining of the oil and the aqueous phases, they were added at a colloidal mill, remaining under constant stirring and heating during 15 minutes. Each asphalt emulsion was evaluated considering: sieve analysis, Saybolt Furol viscosity, pH determination, settlement and storage stability, residue by evaporation, and penetration of residue. After the characterization of conventional emulsions, it was chosen the one that presented all properties in accordance with Brazilian specifications (DNER-EM 369/97). This emulsion was used for the development of all modified asphalt emulsions. Three polymeric industrial residues were used as modifier agents: one from a clothing button industry (cutouts of clothing buttons) and two from a footwear industry (cutouts of sandals and tennis shoes soles), all industries located at Rio Grande do Norte State (Brazil).The polymeric residues were added into the asphalt emulsion (1 to 6 wt.%) and the same characterization rehearsals were accomplished. After characterization, it were developed the cold-mix asphalts. It was used the Marshall mix design. For cold-mix asphalt using the conventional emulsion, it was used 5, 6 and 7 wt.% asphalt emulsion. The conventional mixtures presented stability values according Brazilian specification (DNER-369/97). For mixtures containing asphalt modified emulsions, it was observed that the best results were obtained with emulsions modified by button residue

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Natal/RN, 68% of the population uses some kind of individual system for their domestic sewers treatment, being that the most used it is septic tank, followed by sumidouro. Every treatment system of sewers, usually used, generates a by-product denominated sludge. That residue presents some components, in its constitution, undesirable under the environmental and sanitary point of view. In such case, to assure that the system treatment has satisfactory results, it is necessary to do the adjusted disposition of the sludge sewage. Several countries are looking for technical alternatives for the use and disposition of residues. Under technical and environmental conditions appropriate, these materials can be used, decreasing the consumption of the natural resources and the treatment need, storage or elimination of the wastes, what decrease the risks created. Some of the alternatives of recycling of the sludge sewage are: the application in the agriculture, in the production of energy and as raw material in the civil construction. This study evaluated asphalt mixtures behavior that partially substituted conventional aggregates by septic tank sludge. The septic tank sludge gave origin to two raw materials called raw sludge and sludge ash. The raw sludge was put as a small aggregate and the sludge ash as filler. In the first experiment it was made a comparison between the mixture with conventional aggregates and the mixtures that replaced sand by raw sludge in the proportions from 5% to 40%. In the second experiment, it was made comparison between mixtures with 1%, 2% and 3% of sludge ash and cement. The stages developed along the study were: physical characterization of the conventional materials; physical, chemistry, thermal, mineralogical characterizations and analysis of environmental risk of the raw sludge; physical characterization and analysis of environmental risk of the sludge ash; analysis of the mixtures performance through its volumetric and mechanical characteristics; forecast of the mixtures susceptibility in the moisture presence. For the grain size composition used and with the percentage asphalt adopted, the mixtures with up to 7,5% of raw sludge in his composition attend to the National Department of Transports Infrastructure (DNIT) specifications. However, in agreement with the mixtures susceptibility in the moisture presence, the mixtures with addition of raw sludge don't present satisfactory acting. In such case, they could be used in arid and semi-arid areas. The raw sludge application in mixtures increased their voids volume and their stability. However, it damaged mixtures adhesiveness. Mixtures with sludge ash and with cement presented similar behavior. However, mixtures with sludge ash presented a better performance than mixtures with cement as for their stability and their tensile strength ratio. The mixture with 1% of sludge ash is better. The wastes studied don't represent environmental risk

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global society and technology have changed the relationships of the market. Quality and cost are not the main aspects of any industrial product. On the other hand, design, innovation and sustainability became significant requirements to company’s competitiveness. In this context, the design approach has shown evolutions, integrating social and environmental aspects beside traditional aspects such as technical and economic. Still, design has been becoming a strategic opportunity for companies, improving their competitiveness and increasing their market share. Thus, this research has analyzed the integration of both the Sustainable Design and Strategic Design Coaching (SDC) method in the making decision activities of companies. A cement company (BQMIL) was assigned as case study, in which the previous results have pointed out the significant hole of those concepts to generate Eco-innovation and Eco-Brand to increase its market share, corroborating the expectative of the design team