6 resultados para Array optimization

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FERNANDES, Fabiano A. N. et al. Optimization of Osmotic Dehydration of Papaya of followed by air-drying. Food Research Internation, v. 39, p. 492-498, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthetic guanylhydrazones WE010 (3,5-di-tert-butil-4-hidroxibenzaldehyde-guanylhydrazone), WE014 (4-bifenilcarboxialdehydeguanylhydrazone) and WE017 (3,4-diclorobenzaldehydeguanylhydrazone) showed high cytotoxic activity in terms of percentage inhibition of cancer cells growth. However, further progress in the development of these drug candidates requires precise and convenient methods for their qualitative and quantitative analyses. The aim of this study was to develop and validate High Performance Liquid Chromatography with diode-array detection (HPLC-DAD) and Ultra Fast Liquid Chromatography with diode-array detection (UFLC-DAD) methods suitable for as simultaneous as isolated determination of studied guanylhydrazones, based on the optimization of chromatographic parameters and obtaining reduced detection times. The chromatographic analyses of analytes by HPLC were performed on C18 ACE analytical column (150 mm x 4.6 mm), with a particle size of 5.0 μm. Among all the conditions assayed, the best results of separation were obtained with a mixture of methanol:water (60:40, v/v) as the mobile phase at a flow rate 1.5mL/min and pH of 3.5 adjusted at acetic acid. The UFLC method was developed by experimetal desing techniques in order to find optimal chromatographic analytical conditions, which were achieved on XR-ODS analytical column (50 mm x 3.0 mm), with a particle size of 2,2 μm, maintained at 25 ºC. The mobile phase was consisted of methanol:water (65:35, v/v) with 0.1% triethylamine (TEA) and pH of 3.5 adjusted at acetic acid, at a flow rate 0.5 mL/min. The procedure were validated following evaluating parameters such as specificity, linearity, limits of detection (LD) and quantification (LQ), precision, accuracy and robustness, giving results within the acceptable range. Although the UFLC method shows better sensitivity (lower values of LD and LQ), robustness (lower rates of relative standard deviation) and minimize spending time and solvent, both developed methods were adequately applied to the analysis of guanylhydrazones molecules, may be used in routine of quality control laboratories. Keywords: guanylhydrazones, HPLC/DAD, UFLC/DAD, validation of analitical method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bidimensional periodic structures called frequency selective surfaces have been well investigated because of their filtering properties. Similar to the filters that work at the traditional radiofrequency band, such structures can behave as band-stop or pass-band filters, depending on the elements of the array (patch or aperture, respectively) and can be used for a variety of applications, such as: radomes, dichroic reflectors, waveguide filters, artificial magnetic conductors, microwave absorbers etc. To provide high-performance filtering properties at microwave bands, electromagnetic engineers have investigated various types of periodic structures: reconfigurable frequency selective screens, multilayered selective filters, as well as periodic arrays printed on anisotropic dielectric substrates and composed by fractal elements. In general, there is no closed form solution directly from a given desired frequency response to a corresponding device; thus, the analysis of its scattering characteristics requires the application of rigorous full-wave techniques. Besides that, due to the computational complexity of using a full-wave simulator to evaluate the frequency selective surface scattering variables, many electromagnetic engineers still use trial-and-error process until to achieve a given design criterion. As this procedure is very laborious and human dependent, optimization techniques are required to design practical periodic structures with desired filter specifications. Some authors have been employed neural networks and natural optimization algorithms, such as the genetic algorithms and the particle swarm optimization for the frequency selective surface design and optimization. This work has as objective the accomplishment of a rigorous study about the electromagnetic behavior of the periodic structures, enabling the design of efficient devices applied to microwave band. For this, artificial neural networks are used together with natural optimization techniques, allowing the accurate and efficient investigation of various types of frequency selective surfaces, in a simple and fast manner, becoming a powerful tool for the design and optimization of such structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna arrays are able to provide high and controlled directivity, which are suitable for radiobase stations, radar systems, and point-to-point or satellite links. The optimization of an array design is usually a hard task because of the non-linear characteristic of multiobjective, requiring the application of numerical techniques, such as genetic algorithms. Therefore, in order to optimize the electronic control of the antenna array radiation pattem through genetic algorithms in real codification, it was developed a numerical tool which is able to positioning the array major lobe, reducing the side lobe levels, canceling interference signals in specific directions of arrival, and improving the antenna radiation performance. This was accomplished by using antenna theory concepts and optimization methods, mainly genetic algorithms ones, allowing to develop a numerical tool with creative genes codification and crossover rules, which is one of the most important contribution of this work. The efficiency of the developed genetic algorithm tool is tested and validated in several antenna and propagation applications. 11 was observed that the numerical results attend the specific requirements, showing the developed tool ability and capacity to handle the considered problems, as well as a great perspective for application in future works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work is to optimize the performance of frequency selective surfaces (FSS) composed of crossed dipole conducting patches. The optimization process is performed by determining proper values for the width of the crossed dipoles and for the FSS array periodicity, while the length of the crossed dipoles is kept constant. Particularly, the objective is to determine values that provide wide bandwidth using a search algorithm with representation in bioinspired real numbers. Typically FSS structures composed of patch elements are used for band rejection filtering applications. The FSS structures primarily act like filters depending on the type of element chosen. The region of the electromagnetic spectrum chosen for this study is the one that goes from 7 GHz to 12 GHz, which includes mostly the X-band. This frequency band was chosen to allow the use of two X-band horn antennas, in the FSS measurement setup. The design of the FSS using the developed genetic algorithm allowed increasing the structure bandwidth