4 resultados para Apparent and partial molar volume

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The area studied forms a thin NNE-directed belt situated south of Recife town (Pernambuco state), northeastern Brazil. Geologically, it comprises the Pernambuco Basin (PB), which is limited by the Pernambuco Lineament to the north, the Maragogi high to the south and the Pernambuco Alagoas massif to the west, all of them with Precambrian age. This thesis reports the results obtained for the Cabo Magmatic Province (CMP), aiming the characterization of the geology, stratigraphy, geochronology, geochemistry and petrogenesis of the Cretaceous igneous rocks presented in the PB. The PB is composed of the Cabo Formation (rift phase) at the base (polymictic conglomerates, sandstones, shales), an intermediate unit, the Estiva Formation (marbles and argillites), and, at the top, the Algodoais Formation (monomictic conglomerates, sandstones, shales). The CMP is represented by trachytes, rhyolites, pyroclastics (ignimbrites), basalts / trachy-andesites, monzonites and alkali-feldspar granite, which occur as dykes, flows, sills, laccoliths and plugs. Field observations and well descriptions show that the majority of the magmatic rocks have intrusive contacts with the Cabo Formation, although some occurrences are also suggestive of synchronism between volcanism and siliciclastic sedimentation. 40Ar/39Ar and zircon fission tracks for the magmatic rocks indicate an average age of 102 r 1 Ma for the CMP. This age represents an expressive event in the province and is detected in all igneous dated materials. It is considered as a minimum age (Albian) for the magmatic episode and the peak of the rift phase in the PB. The 40Ar/39Ar dates are about 10-14 Ma younger than published palynologic ages for this basin. Geochemically, the CMP may be divided in two major groups; i) a transitional to alkaline suite, constituted by basalts to trachy-andesites (types with fine-grained textures and phenocrysts of sanidine and plagioclase), trachytes (porphyrytic texture, with phenocrysts of sanidine and plagioclase) and monzonites; ii) a alkaline suite, highly fractionated, acidic volcano-plutonic association, formed by four subtypes (pyroclastic flows ignimbrites, fine-to medium-grained rhyolites, a high level granite, and later rhyolites). These four types are distinguished essentially by field aspects and petrographic and textural features. Compatible versus incompatible trace element concentrations and geochemical modeling based on both major and trace elements suggest the evolution through low pressure fractional crystallization for trachytes and other acidic rocks, whereas basalts / trachy-andesites and monzonites evolved by partial melting from a mantle source. Sr and Nd isotopes reveal two distinct sources for the rocks of the CMP. Concerning the acidic ones, the high initial Sr ratios (ISr = 0.7064-1.2295) and the negative HNd (-0.43 to -3.67) indicate a crustal source with mesoproterozoic model ages (TDM from 0.92 to 1.04 Ga). On the other hand, the basic to intermediate rocks have low ISr (0.7031-0.7042) and positive HNd (+1.28 to +1.98), which requires the depleted mantle as the most probable source; their model ages are in the range 0.61-0.66 Ga. However, the light rare earth enrichment of these rocks and partial melting modeling point to an incompatible-enriched lherzolitic mantle with very low quantity of garnet (1-3%). This apparent difference between geochemical and Nd isotopes may be resolved by assuming that the metasomatizing agent did not obliterate the original isotopic characteristics of the magmas. A 2 to 5% partial melting of this mantle at approximately 14 kbar and 1269oC account very well the basalts and trachy-andesites studied. By using these pressure and temperatures estimates for the generation of the basaltic to trachy-andesitic magma, it is determined a lithospheric stretching (E) of 2.5. This E value is an appropriated estimate for the sub-crustal stretching (astenospheric or the base of the lithosphere?) region under the Pernambuco Basin, the crustal stretching probably being lower. The integration of all data obtained in this thesis permits to interpret the magmatic evolution of the PB as follows; 1st) the partial melting of a garnet-bearing lherzolite generates incompatible-enriched basaltic, trachy-andesitic and monzonitic magmas; 2nd) the underplating of these basaltic magmas at the base of the continental crust triggers the partial melting of this crust, and thus originating the acidic magmas; 3rd) concomitantly with the previous stage, trachytic magmas were produced by fractionation from a monzonitic to trachy-andesitic liquid; 4th) the emplacement of the several magmas in superficial (e.g. flows) or sub-superficial (e.g. dykes, sills, domes, laccoliths) depths was almost synchronically, at about 102 r 1 Ma, and usually crosscutting the sedimentary rocks of the Cabo Formation. The presence of garnet in the lherzolitic mantle does not agree with pressures of about 14 kbar for the generation of the basaltic magma, as calculated based on chemical parameters. This can be resolved by admitting the astenospheric uplifting under the rift, which would place deep and hot material (mantle plume?) at sub-crustal depths. The generation of the magmas and their subsequent emplacement would be coupled with the crustal rifting of the PB, the border (NNE-SSW directed) and transfer (NW-SE directed) faults serving as conduits for the magma emplacement. Based on the E parameter and the integration of 40Ar/39Ar and palynologic data it is interpreted a maximum duration of 10-14 Ma for the rift phase (Cabo Formation clastic sedimentation and basic to acidic magmatism) of the PB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a study of structural, electronic and optical properties, at ambient conditions, of CaSiO3, CaGeO3 and CaSnO3 crystals, all of them a member of Ca-perovskite class. To each one, we have performed density functional theory ab initio calculations within LDA and GGA approximations of the structural parameters, geometry optimization, unit cell volume, density, angles and interatomic length, band structure, carriers effective masses, total and partial density of states, dielectric function, refractive index, optical absorption, reflectivity, optical conductivity and loss function. A result comparative procedure was done between LDA and GGA calculations, a exception to CaSiO3 where only LDA calculation was performed, due high computational cost that its low symmetry crystalline structure imposed. The Ca-perovskite bibliography have shown the absence of electronic structure calculations about this materials, justifying the present work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of carboxymethylcellulose (CMC) in association to calcium carbonate particles (CaCO3) in most water-based drilling fluids is to reduce the fluid loss to the surrounding formation. Another essential function is to provide rheological properties capable of maintaining in suspension the cuttings during drilling operation. Therefore, it is absolutely essential to correlate the polymer chemical structure (degree of substitution, molecular weight and distribution of substituent) with the physical-chemical properties of CaCO3, in order to obtain the better result at lower cost. Another important aspect refers to the clay hydration inhibitive properties of carboxymethylcellulose (CMC) in drilling fluids systems. The clay swelling promotes an undesirable damage that reduces the formation permeability and causes serious problems during the drilling operation. In this context, this thesis consists of two main parts. The first part refers to understanding of interactions CMC-CaCO3, as well as the corresponding effects on the fluid properties. The second part is related to understanding of mechanisms by which CMC adsorption occurs onto the clay surface, where, certainly, polymer chemical structure, ionic strength, molecular weight and its solvency in the medium are responsible to affect intrinsically the clay layers stabilization. Three samples of carboximetilcellulose with different molecular weight and degree of substitution (CMC A (9 x 104 gmol DS 0.7), CMC B (2.5 x 105 gmol DS 0.7) e CMC C (2.5 x 105 gmol DS 1.2)) and three samples of calcite with different average particle diameter and particle size distribution were used. The increase of CMC degree of substitution contributed to increase of polymer charge density and therefore, reduced its stability in brine, promoting the aggregation with the increase of filtrate volume. On the other hand, the increase of molecular weight promoted an increase of rheological properties with reduction of filtrate volume. Both effects are directly associated to hydrodynamic volume of polymer molecule in the medium. The granulometry of CaCO3 particles influenced not only the rheological properties, due to adsorption of polymers, but also the filtration properties. It was observed that the lower filtrate volume was obtained by using a CaCO3 sample of a low average size particle with wide dispersion in size. With regards to inhibition of clay swelling, the CMC performance was compared to other products often used (sodium chloride (NaCl), potassium chloride (KCl) and quaternary amine-based commercial inhibitor). The low molecular weight CMC (9 x 104 g/mol) showed slightly lower swelling degree compared to the high molecular weight (2.5 x 105 g/mol) along to 180 minutes. In parallel, it can be visualized by Scanning Electron Microscopy (SEM) that the high molecular weight CMC (2.5 x 105 g/mol e DS 0.7) promoted a reduction in pores formation and size of clay compared to low molecular weight CMC (9.0 x 104 g/mol e DS 0.7), after 1000 minutes in aqueous medium. This behavior was attributed to dynamic of interactions between clay and the hydrodynamic volume of CMC along the time, which is result of strong contribution of electrostatic interactions and hydrogen bounds between carboxylate groups and hydroxyls located along the polymer backbone and ionic and polar groups of clay surface. CMC adsorbs on clay surface promoting the skin formation , which is responsible to minimize the migration of water to porous medium. With the increase of degree of substitution, it was observed an increase of pores onto clay, suggesting that the higher charge density on polymer is responsible to decrease its flexibility and adsorption onto clay surface. The joint evaluation of these results indicate that high molecular weight is responsible to better results on control of rheological, filtration and clay swelling properties, however, the contrary effect is observed with the increase of degree of substitution. On its turn, the calcite presents better results of rheological and filtration properties with the decrease of average viii particle diameter and increase of particle size distribution. According to all properties evaluated, it has been obvious the interaction of CMC with the minerals (CaCO3 and clay) in the aqueous medium