11 resultados para Antioxidant ability
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
The coast of Rio Grande do Norte has more than 100 species of seaweed, mostly unexplored regarding their pharmacological potential. The sulfated polysaccharides (PS) are by far the more seaweed compounds studied, these present a range of biological properties, such as anticoagulant activity, anti-inflammatory, antitumor and antioxidant properties. In this study, we extract sulfated polysaccharide rich-extracts of eleven algae from the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; Dictyota mertensis; Sargassum filipendula; Spatoglossum schröederi; Gracilaria caudata; Caulerpa cupresoides; Caulerpa prolifera; Caulerpa sertularioides e Codim isthmocladum), and these were evaluated for the potential anticoagulant, antioxidant and antiproliferative. All polysaccharide extracts showed activity for anticoagulant, antioxidant and/or antiproliferative activity, especially D. delicatula and S. filipendula, which showed the most prominent pharmacological potential, thereby being chosen to have their sulfated polysaccharides extracted. By fractionating method were obtained six fractions rich in sulfated polysaccharides to the algae D. delicatula (DD-0,5V, DD-0, 7V, DD-1,0v, DD-1,3v, DD-1,5v and DD-2,0) and five fractions to the alga S. filipendula (SF-0,5V, SF-0,7V, SF-1,0v, SF-1,5v and SF-2,0v). For the anticoagulant assay only the fractions of D. delicatula showed activity, with emphasis on DD-1, 5v that presented the most prominent activity, with APTT ratio similar to clexane® at 0.1 mg/mL. When evaluated the antioxidant potential, all fractions showed potential in all tests (total antioxidant capacity, hydroxyl and superoxide radicals scavenging, ferrous chelation and reducing power), however, the ability to chelate iron ions appears as the main mechanism antioxidant of sulfated polysaccharides from seaweed. In antiproliferative assay, all heterofucanas showed dose-dependent activity for the inhibition of cell proliferation of HeLa, however, with the exception of SF-0,7V, SF- 1,0v and SF-1,5v, all fractions showed antiproliferative activity against MC3T3, a normal cell line. The heterofucana SF-1,5V had its antiproliferative mechanism of action evaluated. This heterofucan induces apoptosis in HeLa cells by a pathway caspase independent, promoting the release of apoptosis Inducing Factor (AIF) in the cytosol, which in turn induces chromatin condensation and DNA fragmentation into 50Kb fragments. These results are significant in that they provide a mechanistic framework for further exploring the use of SF-1.5v as a novel chemotherapeutics against human cervical cancer.
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
The species of the genus Marsdenia, Apocynaceae, are widely used in folk medicine of several countries. In Brazil is found several species belonging to this genus. The in vitro antioxidant, anticoagulant and antiproliferative activities were evaluated to aqueous extracts of stalk, leaf and root of Marsdenia megalantha. In the total antioxidant capacity assay (expressed as ascorbic acid equivalents) the stalk extract showed 76.0 mg/g, while leaf and root extracts 141.3 mg/g and 57.0 mg/g, respectively. The stalk and leaf extracts showed chelating activity around 40% at 1.5 mg/mL, while root extract, at the same concentration showed, 17%. Only the leaf extract showed a significant ability in superoxide scavenging (80% at 0.8 mg/mL). Any extract was able in scavenge hydroxyl, as well anticoagulant activity. The antiproliferative activity of the extracts was evaluated against HeLa tumor cell line. The extracts inhibited in a dose-dependent manner the cell growth. However, the leaf extract showed 80% of inhibition at 1.0 mg/mL, while stalk and root extracts inhibited 63% and 30%, respectively. To assess the mechanism of cell death caused by the leaf extract in HeLa, was performed flow cytometry and western blot. The results show that leaf extract induces cell death by apoptosis through an activation caspase-independent pathway. These data indicate that stalk and leaf extracts obtained have potential to be used as antioxidants and anticancer drugs
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM
Resumo:
Commercially pure Titanium (cp Ti) is a material largely used in orthopedic and dental implants due to its biocompatibility properties. Changes in the surface of cp Ti can determine the functional response of the cells such as facilitating implant fixation and stabilization, and increased roughness of the surface has been shown to improve adhesion and cellular proliferation. Various surface modification methods have been developed to increase roughness, such as mechanical, chemical, electrochemical and plasma treatment. An argon plasma treatment generates a surface that has good mechanical proprieties without chemical composition modification. Besides the topography, biological responses to the implant contribute significantly to its success. Oxidative stress induced by the biomaterials is considered one of the major causes of implant failure. For this reason the oxidative potential of titanium surfaces subjected to plasma treatment was evaluated on this work. CHO-k1 cells were cultivated on smooth or roughed Ti disks, and after three days, the redox balance was investigated measuring reactive oxygen species (ROS) generation, total antioxidant capacity and biomarkers of ROS attack. The results showed cells grown on titanium surfaces are subjected to intracellular oxidative stress due to hydrogen peroxide generation. Titanium discs subjected to the plasma treatment induced less oxidative stress than the untreated ones, which resulted in improved cellular ability. Our data suggest that plasma treated titanium may be a more biocompatible biomaterial.
Resumo:
Chitosan is a natural polymer, biodegradable, nontoxic, high molecular weight derived from marine animals, insects and microorganisms. Oligomers of glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) have interesting biological activities, including antitumor effects, antimicrobial activity, antioxidant and others. The alternative proposed by this work was to study the viability of producing chitooligosaccharides using a crude enzymes extract produced by the fungus Metarhizium anisopliae. Hydrolysis of chitosan was carried out at different times, from 10 to 60 minutes to produce chitooligosaccharides with detection and quantification performed by High Performace Liquid Chromatography (HPLC). The evaluation of cytotoxicity of chitosan oligomers was carried out in tumor cells (HepG2 and HeLa) and non-tumor (3T3). The cells were treated for 72 hours with the oligomers and cell viability investigated using the method of MTT. The production of chitosan oligomers was higher for 10 minutes of hydrolysis, with pentamers concentration of 0.15 mg/mL, but the hexamers, the molecules showing greater interest in biological properties, were observed only with 30 minutes of hydrolysis with a concentration of 0.004 mg/mL. A study to evaluate the biological activities of COS including cytotoxicity in tumor and normal cells and various tests in vitro antioxidant activity of pure chitosan oligomers and the mixture of oligomers produced by the crude enzyme was performed. Moreover, the compound with the highest cytotoxicity among the oligomers was pure glucosamine, with IC50 values of 0.30; 0.49; 0.44 mg/mL for HepG2 cells, HeLa and 3T3, respectively. Superoxide anion scavenging was the mainly antioxidant activity showed by the COS and oligomers. This activity was also depending on the oligomer composition in the chitosan hydrolysates. The oligomers produced by hydrolysis for 20 minutes was analyzed for the ability to inhibit tumor cells showing inhibition of proliferation only in HeLa cells, did not show any effect in HepG2 cells and fibroblast cells (3T3)
Resumo:
Seaweeds are organisms known to exhibit a variety of biomolecules with pharmacological properties. The coast of Rio Grande do Norte has over 100 species of seaweeds, most of them not yet explored for their pharmacological potential. Sugars and phenolic compounds are the most studied of these being assigned a range of biological properties, such as anticoagulant , antiinflammatory, antitumor and antioxidant activities. In this work, we obtained methanolic extracts from thirteen seaweeds of the coast of Rio Grande do Norte (Dictyota cervicornis; Dictiopterys delicatula; Dictyota menstruallis; D. mertensis; Sargassum filipendula; Spatoglossum schröederi; Acanthophora specifera; Botryocladia occidentalis; Caulerpa cupresoides; C. racemosa; C. prolifera; C. sertularioides e Codium isthmocladum). They were evaluated as anticoagulant and antioxidant drugs, as well as antiproliferative drugs against the tumor cell line HeLa. None of the methanolic extracts showed anticoagulant activity, but when they were evaluated as antioxidant drugs all of extracts showed antioxidant activity in all tests performed (total antioxidant capacity, sequestration of superoxide and hydroxyl radicals, ferric chelation and reductase activity), especially the algae D. mentrualis, D. cilliolata and C. prolifera, who had the greatest potential to donate electrons.In addition, the ability of iron ions chelation appears as the main antioxidant mechanism of the methanolic extracts of these seaweeds mainly for the extract of the C. racemosa seaweed, which reached almost 100% activity. In the MTT assay, all extracts showed inhibitory activity at different levels againts HeLa cells. Moreover, D. cilliolata (MEDC) and D. menstrualis (MEDM) extracts showed specific activity to this cell line, not inhibiting the viability of 3T3 normal cell line, so they were chosen for detailing the antiproliferative mechanism of action. Using flow cytometry, fluorescence microscopy and in vitro assays we demonstrated that MEDC and MEDM induced apoptosis in HeLa cells by activation of caspases 3 and 9 and yet, MEDC induces cell cycle arrest in S phase. Together, these results showed that the methanolic extracts of brown seaweed D. menstrualis and D. cilliolata may contain agents with potential use in combatting cells from human uterine adenocarcinoma. This study also points to the need for more in-depth research on phytochemical and biological context to enable the purification of biologically active products of these extracts
Resumo:
Spondias sp. (Anacardiaceae), popularly known as cajá-umbu, is an endemic plant from Northeastern Brazil, where their leaves are widely used in folk medicine to treat inflammatory processes, while their fruits have a great agro industrial potential. This study was designed to evaluate hepatoprotective, antinociceptive, antioxidant, antimicrobial and anti-inflammatory properties, as well as the acute toxicity and repeated dose 28, using a methanolic extract (MES), a fraction rich in flavonoids (FRF) and a precipitate from Spondias sp.leaves. The antioxidant activity of them was valued to evaluate their free radical scavenger capacity by DPPH test, whereas MES and FRF were used to evaluate while the preventive action on carbon tetrachloride (CCl4)-induced hepatotoxicity. Seven groups (n=5) of female Wistar rats were used as follows: control group, CCl4-intoxicated group treated with EMS (500 mg/kg) for 7 days, three CCl4-intoxicated groups treated with FRF (25, 50 and 75 mg/kg) for 7 days and the CCl4-intoxicated group treated with Legalon ® (silimarina; (phytotherapeutic reference) (50 mg/kg; 7 days). MES and FRF showed a protective action against liver injury induced by CCl4, being observed a significant reduction of serum enzyme activity marker of liver damage (alanine transaminase and aspartate transaminase). On the other hand, the lipid peroxidation (SRAT) decrease, as well as the increase of glutathione content and enzyme activity of antioxidant defense system (SOD, CAT, GPx) toward near normal values indicated the ability of EMS to restore the oxidative imbalance induced by CCl4. The histological analysis confirmed the hepatoprotection, compared to degenerative changes in CCl4-treated group. This hepatoprotetor effect was similar to that shown by Legalon®. The in vitro high antioxidant capacity of extract (93.16 ± 1.00%) showed analogous results to those obtained by Carduus marianus BHT (reference standard). This fact explains the obtained results in vivo. Although no antimicrobial activity was detected, EMS and FRF promoted the antinociceptive effect induced in the second phase by the intraplantar formalin test, evidencing the anti-inflammatory action; confirmed by the carrageenan-induced peritonitis model. The evaluation of the mechanical allodynia (CFA a 80%) demonstrated the involvement of the Spondias sp. chemical composition in the anti-inflammatory activity toward the acute processes. The acute exposure and repeated dose during 28 days did not produce significant changes in the parameters that evaluate toxicity. Together the experimental results reveal, that Spondias sp. leaf extracts have a promising potential in pharmaceutical area, and due to its non-toxic condition present efficiency and security
Resumo:
Licania rigida Benth., Licania tomentosa (Benth.) Fritsch, and Couepia impressa Prance (Chrysobalanaceae family) plants have long been used medicinally by the people from Northeastern Brazil. Crude extracts and infusions of these plants have been applied in the treatment of several conditions such as diabetes and rheumatism, degenerative diseases with involvement of reactive oxygen species (ROS). The aim of this study was to evaluate the aqueous, ethanolic, and hydroethanolic leaves extracts antioxidant capacity of these species, using several in vitro assay systems (reducing power, DPPH● scavenging, the β-carotene linoleate model system and lipid peroxidation inhibition in rat brain homogenate, using thiobarbituric acid reactive substances - TBARS). The oral acute toxicity of aqueous extracts was also evaluated in vivo. Results revealed that these extracts possess a potent reducing power and DPPH scavenging ability, as well as the ability to prevent TBARS formation in rat brain homogenate in a concentration-dependent manner. Regarding in vivo oral acute toxicity of the aqueous species extracts, no toxic effects were observed upon evaluating physiological, hematological and biochemical parameters. The presence of high levels of phenolics and flavonoids was determined mainly in the ethanol extract. However, the C. impressa hydroethanolic extract, fractionated with hexane, chloroform and ethyl acetate for analysis by NMR 1H, showed more efficient results than the reference antioxidant Carduus marianus. The classes of organics compounds were determined were phenolics in the fraction of ethyl acetate and terpenes in chloroform and hexane fractions. The ethil acetate fraction had the highest content of flavonoids and increased scavenging capacity of DPPH●, possibly by the presence of phenolic compounds. Therefore, a detailed investigation of the phytochemical composition and in vivo study of the C. impressa hydroethanolic extract is suggested to characterize the active compounds of the species