10 resultados para Anti-bothropic factor
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Envenomation caused by venomous animals, mainly scorpions and snakes, are a serious matter of public health. Tityus serrulatus is considered the most venomous scorpion in South America because of the high level of toxicity of its venom. It is responsible for causing serious accidents, mainly with kids. The species Bothrops jararaca is a serpent that has in its venom a complex mixture of enzyme, peptides and other molecules. The toxins of the venom of B. jararaca induce local and systemic inflammatory responses. The treatment chosen to serious cases of envenomation is the intravenous administration of the specific antivenom. However, the treatment is not always accessible to those residents in rural areas, so that they use medicinal plant extracts as the treatment. In this context, aqueous extracts, fractions and isolated compounds of Aspidosperma pyrifolium (pereiro) and Ipomoea asarifolia (salsa, salsa-brava), used in popular medicine, were studied in this research to evaluate the anti-inflammatory activity in the peritonitis models induced by carrageenan and peritonitis induced by the venom of the T. serrulatus (VTs), and in the local oedema model and inflammatory infiltrate induced by the venom of the B. jararaca, administrated intravenously. The results of the assays of cytotoxicity, using the MTT, showed that the aqueous extracts from the plant species presented low toxicity to the cells that came from the fibroblast of the mouse embryo (3T3).The chemical analysis of the extracts by High Performance Liquid Chromatography revealed the presence of the rutin flavonoid, in A. pyrifoliu, and rutin, clorogenic acid and caffeic acid, in I. asarifolia. Concerning the pharmacological evaluation, the results showed that the pre-treatment using aqueous extracts and fractions reduced the total leukocyte migration to the abdominal cavity in the peritonitis model caused by the carrageenan and in the peritonitis model induced by the T. serulatus venom. Yet, these groups presented anti-oedematous activity, in the local oedema model caused by the venom of the B. jararaca, and reduced the inflammatory infiltrate to the muscle. The serum (anti-arachnid and anti-bothropic) specific to each venom acted inhibiting the inflammatory action of the venoms and were used as control. The compounds identified in the extracts were also tested and, similar to the plant extracts, showed meaningful anti-inflammatory effects, in the tested doses. Thus, these results are indicating the potential anti-inflammatory activity of the plants studied. This is the first research that evaluated the possible biological effects of the A. pyrifolium and I. asarifolia, showing the biological potential that these species have.
Resumo:
PURPOSE: The infection is one of the main factors that affect the physiological evolution of the surgical wounds. The aim of this work is to evaluate the effects of fibroblast growth factor (FGFâ) and anti-FGFâ in the healing, synthesis and maturation of collagen when topically used on infected skin wounds of rats. METHODS: An experimental study was perfomed in 60 male Wistar rats. All animals were divided in two groups (A and B). Each group was divided in three subgroups A1, B1; A2, B2 and A3, B3. After anesthesia with pentobarbital, two open squared wounds (1cm2), 4cm distant to each other, were done in the dorsal skin of all the rats. In group A (n=30) the wounds were contaminated with multibacterial standard solution, and in group B(n=30) the wounds were maintained sterile. These wounds were named F1 (for inflammation analysis) and F2 (for collagen study). The open wounds of A1 and B1 rats were topically treated with saline solution, A2 and B2 were treated with FGFâ and subgroups A3 and B3 were treated with FGFâ and anti-FGFâ. The rats were observed until complete epitelization of F2 wounds for determination of healing time and the expression of types I and III collagen, using Picro Sirius Red staining. Inflammatory reaction in F1 wounds was studied using hematoxilineosin staining. The three variable was measured by the Image Pro-Plus Média Cybernetics software. The statistical analysis was performed by ANOVA and Tukey test, considering p<0.05 as significant. RESULTS: It was observed that infection retarded significantly (p<0.05) the time of wound scarring and the topical application of FCFb reverted the inhibition of healing caused by bacteria. The inflammatory reaction was greater in the subgroup B2 than in B1 and A3, and the difference was significant (p<0.05). It was observed greater expression of type I collagen in all the subgroups treated with FCFb, when compared with the untreated subgroups. Type III collagen was significantly decreased in wounds of B3 rats, comparing to the other subgroups. CONCLUSIONS: The FCFb accelerated the healing of open infected wounds and contributed with maturation of collagen, enhancing the type I collagen density. The anti-FCFb antibody was able to attenuate the production of both type I and III collagen
Resumo:
PURPOSE: The infection is one of the main factors that affect the physiological evolution of the surgical wounds. The aim of this work is to evaluate the effects of fibroblast growth factor (FGFâ) and anti-FGFâ in the healing, synthesis and maturation of collagen when topically used on infected skin wounds of rats. METHODS: An experimental study was perfomed in 60 male Wistar rats. All animals were divided in two groups (A and B). Each group was divided in three subgroups A1, B1; A2, B2 and A3, B3. After anesthesia with pentobarbital, two open squared wounds (1cm2), 4cm distant to each other, were done in the dorsal skin of all the rats. In group A (n=30) the wounds were contaminated with multibacterial standard solution, and in group B(n=30) the wounds were maintained sterile. These wounds were named F1 (for inflammation analysis) and F2 (for collagen study). The open wounds of A1 and B1 rats were topically treated with saline solution, A2 and B2 were treated with FGFâ and subgroups A3 and B3 were treated with FGFâ and anti-FGFâ. The rats were observed until complete epitelization of F2 wounds for determination of healing time and the expression of types I and III collagen, using Picro Sirius Red staining. Inflammatory reaction in F1 wounds was studied using hematoxilineosin staining. The three variable was measured by the Image Pro-Plus Média Cybernetics software. The statistical analysis was performed by ANOVA and Tukey test, considering p<0.05 as significant. RESULTS: It was observed that infection retarded significantly (p<0.05) the time of wound scarring and the topical application of FCFb reverted the inhibition of healing caused by bacteria. The inflammatory reaction was greater in the subgroup B2 than in B1 and A3, and the difference was significant (p<0.05). It was observed greater expression of type I collagen in all the subgroups treated with FCFb, when compared with the untreated subgroups. Type III collagen was significantly decreased in wounds of B3 rats, comparing to the other subgroups. CONCLUSIONS: The FCFb accelerated the healing of open infected wounds and contributed with maturation of collagen, enhancing the type I collagen density. The anti-FCFb antibody was able to attenuate the production of both type I and III collagen
Resumo:
Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer
Resumo:
Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents
Resumo:
Antiophidic activity from decoct of Jatropha gossypiifolia L. leaves against Bothrops jararaca venom. Snakebites are a serious worldwide public health problem. In Latin America, about 90 % of accidents are attributed to snakes from Bothrops genus. Currently, the main available treatment is the antivenom serum therapy, which has some disadvantages such as inability to neutralize local effects, risk of immunological reactions, high cost and difficult access in some regions. In this context, the search for alternative therapies to treat snakebites is relevant. Jatropha gossypiifolia L., a medicinal plant popularly known in Brazil as “pinhão-roxo”, is very used in folk medicine as antiophidic. So, the aim of this study is to evaluate the antiophidic properties of this species against enzymatic and biological activities from Bothrops jararaca snake venom. The aqueous leaf extract of J. gossypiifolia was prepared by decoction. The inhibition studies were performed in vitro, by pre-incubation of a fixed amount of venom with different amounts of extract from J. gossypiifolia for 60 min at 37 °C, and in vivo, through oral or intraperitoneal treatment of animals, in different doses, 60 min before venom injection. The proteolytic activity upon azocasein was efficiently inhibited, indicating inhibitory action upon metalloproteinases (SVMPs) and/or serine proteases (SVSPs). The extract inhibited the fibrinogenolytic activity, which was also confirmed by zymography, where it was possible to observe that the extract preferentially inhibits fibrinogenolytic enzymes of 26 and 28 kDa. The coagulant activity upon fibrinogen and plasma were significantly inhibited, suggesting an inhibitory action upon thrombin-like enzymes (SVTLEs), as well as upon clotting factor activators toxins. The extract prolonged the activated partial thromboplastin time (aPTT), suggesting an inhibitory action toward not only to SVTLEs, but also against endogenous thrombin. The defibrinogenating activity in vivo was efficiently inhibited by the extract on oral route, confirming the previous results. The local hemorrhagic activity was also significantly inhibited by oral route, indicating an inhibitory action upon SVMPs. The phospholipase activity in vitro was not inhibited. Nevertheless, the edematogenic and myotoxic activities were efficiently inhibited, by oral and intraperitoneal route, which may indicate an inhibitory effect of the extract upon Lys49 phospholipase (PLA2) and/ or SVMPs, or also an anti-inflammatory action against endogenous chemical mediators. Regarding the possible action mechanism, was observed that the extract did not presented proteolytic activity, however, presented protein precipitating action. In addition, the extract showed significant antioxidant activity in different models, which could justify, at least partially, the antiophidic activity presented. The metal chelating action presented by extract could be correlated with SVMPs inhibition, once these enzymes are metal-dependent. The phytochemical analysis revealed the presence of sugars, alkaloids, flavonoids, tannins, terpenes and/or steroids and proteins, from which the flavonoids could be pointed as major compounds, based on chromatographic profile obtained by thin layer chromatography (TLC). In conclusion, the results demonstrate that the J. gossypiifolia leaves decoct present potential antiophidic activity, including action upon snakebite local effects, suggesting that this species may be used as a new source of bioactive molecules against bothropic venom.
Resumo:
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of nuclear factor κB (NF-κB), matrix metalloproteinase 9 (MMP-9), and CD105 in odontogenic keratocysts (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). STUDY DESIGN: Twenty cases of OKCs, 20 DCs, and 20 RCs were analyzed. A labeling index (LI), which expresses the percentage of NF-κB-stained nuclei, was calculated for the analysis of NF-κB expression. Expression of MMP-9 in the epithelium and in the capsule of each lesion was scored as 0 (<10% stained cells), 1 (10%-50% stained cells), or 2 (>50% stained cells). In addition, MMP-9 immunostaining was analyzed in endothelial cells of vessels with a conspicuous lumen. The angiogenic index was determined based on the number of anti-CD105 antibody-stained microvessels. RESULTS: In the epithelial component, the NF-κB LI was higher in OKCs than in DCs and RCs (P < .001). Analysis of MMP-9 expression in the epithelial component showed a predominance of score 2 in OKCs (90%), DCs (70%), and RCs (65%; P = .159). Evaluation of the NF-κB LI according to the expression of MMP-9 in the epithelial lining revealed no significant difference between lesions (P = .282). In the fibrous capsule, the highest percentage of MMP-9-stained cells (score 2) was observed in OKCs (P = .100). Analysis of the expression of MMP-9 in the vessels of odontogenic cysts showed a predominance of score 2 in OKCs (80%) and RCs (50%) and of score 1 in DCs (75%; P = .002). Mean microvessel count was high in RCs (16.9), followed by DCs (12.1) and OKCs (10.0; P = .163). No significant difference in microvessel count according to the expression of MMP-9 was observed between groups (P = .689). CONCLUSIONS: The results suggest that the more aggressive biologic behavior of OKCs is related to the higher expression of MMP-9 and NF-κB in those lesions. The differences in the biologic behavior of the lesions studied do not seem to be associated with the angiogenic index.
Resumo:
Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications
Resumo:
Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer
Resumo:
Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents